

One of the World's Largest Manufacturers of Discrete Semiconductors and Passive Components

Production Part Approval Process

The following PPAP documentation is assembled according to the AIAG, 4th Edition PPAP Manual and applicable customer requirements

IHLD3232HBERxxxM5A

Generic PPAP

Manufacturing Site- Danshui, China

Date 6-Sept-2017

The following PPAP documentation is assembled according to AIAG, 4th Edition PPAP Manual and applicable customer requirements

TABLE OF CONTENTS

- 1) Design Records
 - a. Customer Specification
 - b. Vishay Data Sheet
 - c. SMD Magnetics Packaging Methods
 - d. Vishay Cross Section Photograph
 - e. Certificate of Design Construction
 - f. Standards of Manufacture for IHLP Inductors
- 2) Engineering Change Documents, if any
- 3) Customer Engineering Approval, if needed
- 4) Design FMEA
- 5) Process Flow Chart
- 6) Process FMEA
- 7) Control Plan
- 8) Measurement System Analysis Studies
 - a. Inductance Measurement System
 - b. "Q" Measurement System
 - c. DC Resistance Measurement System
- 9) Dimensional Results
- 10) Material Performance Test Results

Vishay / Dale Electronics

1505 East Hway 50 Yankton, SD 57078, USA Phone (605) 665-9301 Fax (605) 668-4247 ONE OF THE WORLD'S LARGEST MANUFACTURERS OF DISCRETE SEMICONDUCTORS AND PASSIVE COMPONENTS

Production Part Approval Process The following PPAP documentation is assembled according to AIAG, 4th Edition PPAP Manual and applicable customer requirements

TABLE OF CONTENTS

- 11) Initial Process Studies
- 12) Qualified Laboratory Documentation
 - a. Beer Sheva, Israel
 - b. Yankton, SD
 - c. Columbus, NE
- 13) Appearance Approval Report (AAR), if applicable
- 14) Sample Product
- 15) Master Sample
- 16) Checking Aids
- 17) Records of Compliance with Customer Specific Requirements
- 18) Part Submission Warrant (PSW)
- 19) Bulk Material Requirements

Note: Generic PPAPs do not include all sections shown in the Table of Contents. Sections 4,5,6,7,8,12,&18 are only available upon request of a full Automotive PPAP.

Production Part Approval Process The following PPAP documentation is assembled according to AIAG, 4th Edition PPAP Manual and applicable customer requirements

Use the control buttons below to navigate through the PPAP sections.

Section 1. Design Records

Vishay / Dale Electronics 1505 East Hway 50 Yankton, SD 57078, USA Phone (605) 665-9301 Fax (605) 668-4247 ONE OF THE WORLD'S LARGEST MANUFACTURERS OF DISCRETE SEMICONDUCTORS AND PASSIVE COMPONENTS www.vishay.com

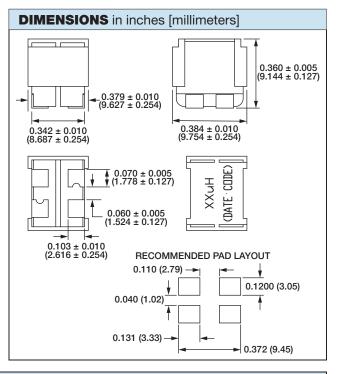
Vishay Dale

Low Profile, High Current Dual Inductors

DESIGN SUPPORT TOOLS click logo to get started

STANDAR	D EL	ECTR	ICAL SPI	ECIFICATIO	NS
L ₀ INDUCTANCE ± 20 % AT 100 kHz, 0.25 V, 0 A (μH)	DCR TYP. 25 °C (mΩ)	DCR MAX. 25 °C (mΩ)	HEAT RATING CURRENT DC TYP. (A) ⁽¹⁾	SATURATION CURRENT DC TYP. (A) ⁽²⁾	SRF TYP. (MHz)
5	27.3	29.2	6.0	8.5	18.0
10	50.0	53.50	5.0	5.2	13.0
15	62.0	66.34	4.2	3.5	10.0
22	103.0	110.21	3.3	2.9	9.0
33	149.0	159.43	2.4	2.9	6.1

Notes


- All test data is referenced to 25 °C ambient
- Operating temperature range -55 °C to +155 °C
- The part temperature (ambient + temp. rise) should not exceed 155 °C under worst case operating conditions. Circuit design, component placement, PWB trace size and thickness, airflow and other cooling provisions all affect the part temperature. Part temperature should be verified in the end application
- Rated operating voltage (across inductor) = 50 V
- ⁽¹⁾ DC current (A) that will cause an approximate ΔT of 40 °C
- $^{(2)}$ DC current (A) that will cause L₀ to drop approximately 20 %

FEATURES

- Two inductors in one package
- High temperature, up to 155 °C
- Shielded construction
- Optimal design realizes high quality sound and low distortion
- Low coupling for minimal cross-talk between inductors
- Frequency range up to 1 MHz
- Lowest DCR/µH, in this package size
- Handles high transient current spikes without saturation
- Ultra-low buzz noise, due to composite construction
 - AEC-Q200 qualified
 - IHLP design. PATENT(S): <u>www.vishay.com/patents</u>
 - Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

Class D audio amplifiers

DESCRIPTION	1			
IHLD-3232HB-5A	10 µH	± 20 %	ER	e3
MODEL	INDUCTANCE VALUE	INDUCTANCE TOLERANC	E PACKAGE CODE	JEDEC [®] LEAD (Pb)-FREE STANDARD
GLOBAL PAR	T NUMBER			
I H L	D 3 2	3 2 H	3 E R 1	I 0 0 M 5 A
PRODUCT FAN	I L	SIZE	PACKAGE CODE	INDUCTANCE TOL. SERIES VALUE

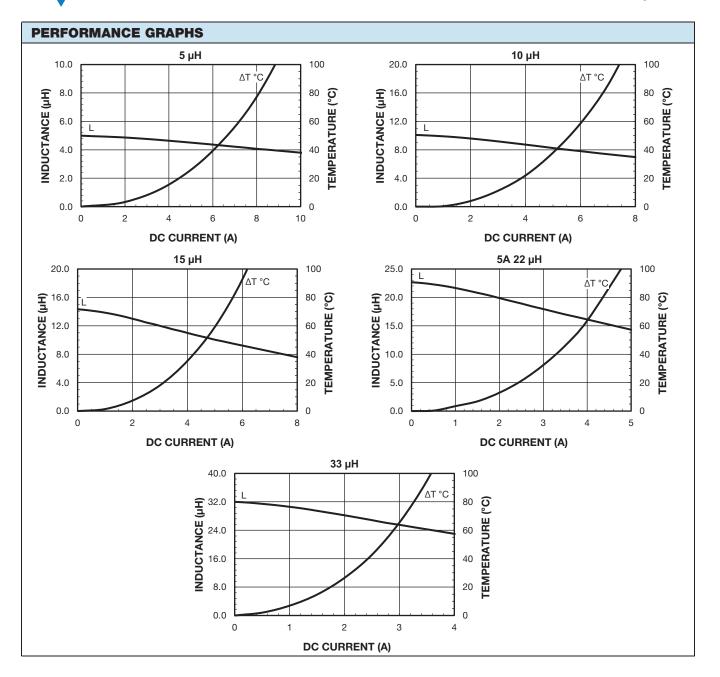
PATENT(S): www.vishay.com/patents

This Vishay product is protected by one or more United States and international patents.

Revision: 20-Oct-17

Document Number: 34383

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

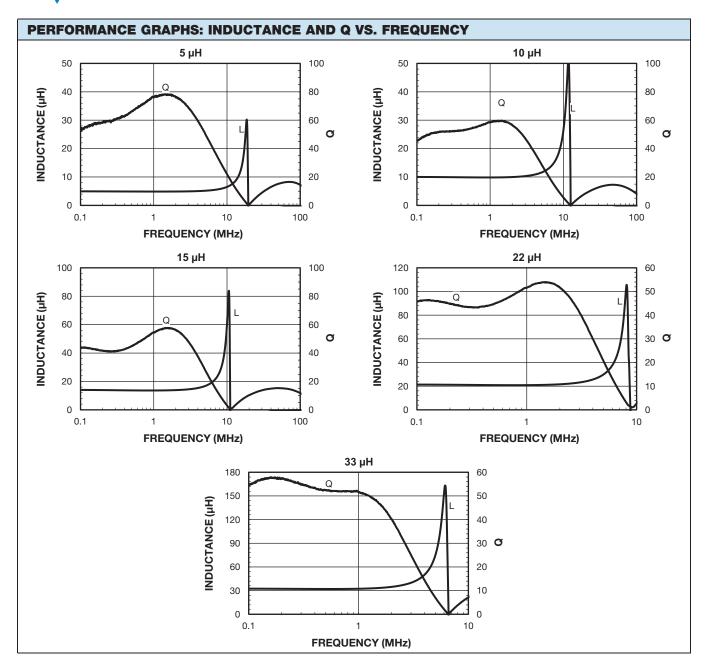


ROHS COMPLIANT

IHLD-3232HB-5A

www.vishay.com

Vishay Dale


For technical questions, contact: <u>magnetics@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

www.vishay.com

IHLD-3232HB-5A

Vishay Dale

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Vishay Dale

SMD Magnetics Packaging Methods

			٦				~				1
			<u>]</u> }			$\sum_{i=1}^{\circ} \Box_{i}$				w	
	User Direc	tion of Feed					Carri	er Dimensior	IS		
	PΔ	CKAGE COD	F					PΔ	CKAGE COE)F	
MODEL		GLOBAL CODE LEAD (Pb)-	GLOBAL CODE LEAD (Pb)-FREE	REEL SIZE	CARRIER TAPE WIDTH (W)	COMPONENT PITCH (P)	UNITS/ REEL	PREVIOUS	GLOBAL CODE LEAD (Pb)-	GLOBAL CODE LEAD (Pb)-FREE	UNITS/ BULK
IHLP-1212ABER	-	-	ER	13	0.472 [12.0]	0.315 [8.0]	3000	-	-	-	-
IHLP-1212ABEV	-	-	ER	13	0.472 [12.0]	0.315 [8.0]	4000	-	-	-	-
IHLP-1212AEER	-	-	ER	13	0.472 [12.0]	0.315 [8.0]	3000	-	-	-	-
IHLP-1212BZER	-	-	ER	13	0.472 [12.0]	0.315 [8.0]	3000	-	-	-	-
IHLP-1212BZEV	-	-	ER	13	0.472 [12.0]	0.315 [8.0]	4000	-	-	-	-
IHLP-1616AB	-	-	ER	13	0.472 [12.0]	0.315 [8.0]	4000	-	-	EB	100
IHLP-1616BZ	-	-	ER	13	0.472 [12.0]	0.315 [8.0]	4000	-	-	EB	100
IHLP-2020AB	-	-	ER	13	0.472 [12.0]	0.315 [8.0]	4000	-	-	EB	100
IHLP-2020BZ	-	-	ER	13	0.472 [12.0]	0.315 [8.0]	2000	-	-	EB	100
IHLP-2020CZ	-	-	ER	13	0.472 [12.0]	0.315 [8.0]	2000	-	-	EB	100
IHLP-2525AH	-	-	ER	13	0.630 [16.0]	0.315 [8.0]	2000	-	-	EB	100
IHLP-2525BD	-	-	ER	13	0.630 [16.0]	0.315 [8.0]	2000	-	-	EB	100
IHLP-2525CZ	-	-	ER	13	0.630 [16.0]	0.315 [8.0]	2000	-	_	EB	100
IHLP-2525EZ	-	-	ER	13	0.630 [16.0]	0.472 [12.0]	500	_	_	EB	100
IHLP-3232CZ	-	_	ER	13	0.630 [16.0]	0.472 [12.0]	1000	_	_	EB	100
IHLP-3232DZ	-	_	ER	13	0.630 [16.0]	0.472 [12.0]	500	_	_	EB	100
IHLP-4040DZ	-	-	ER	13	0.945 [24.0]	0.630 [16.0]	500			EB	100
IHLP-5050CE	-	-	ER	13	0.945 [24.0]	0.630 [16.0]	500	-	-	EB	100
IHLP-5050EZ	-	_	ER	13	0.945 [24.0]	0.630 [16.0]	250		-	EB	100
IHLP-5050ED	-	-	ER	13	0.945 [24.0]	0.630 [16.0]	250	-	-	EB	100
IHLP-6767DZ											
	-	-	ER	13	0.945 [24.0]	0.945 [24.0]	250	-	-	EB	100
IHLP-6767GZ	-	-	ER	13	0.945 [24.0]	0.945 [24.0]	200	-	-	EB	100
IHLP-8787MZ	-	-	ER	13	1.73 [44.0]	1.26 [32.0]	100	-	-	-	-
IHCL-4040DZ	-	-	ER	13	0.945 [24.0]	0.630 [16.0]	500	-	-	EB	100
IHLD-4032KB	-	-	ER		0.945 [24.0]		250	-	-	EB	100
IHLD-3232HB	-	-	ER	13	0.945 [24.0]		250	-	-	EB	100
IHLE-2525CD	-	-	ER	13	0.630 [16.0]	0.315 [8.0]	2000	-	-	EB	100
IHLE-3232DD	-	-	ER	13	0.630 [16.0]	0.472 [12.0]	500	-	-	EB	100
IHLE-4040DD	-	-	ER	13	0.945 [24.0]	0.630 [16.0]	500	-	-	EB	100
IHLR-4040DZ	-	-	ER	13	0.945 [24.0]	0.630 [16.0]	500	-	-	EB	100
IHLM-2525CZ	-	-	ER	13	0.630 [16.0]	0.315 [8.0]	2000	-	-	EB	100
IHLW-4040CF	-	-	ER	13	0.945 [24.0]	0.630 [16.0]	500	-	-	EB	100
IHLW-5050CE	-	-	ER	13	0.945 [24.0]	0.630 [16.0]	500	-	-	EB	100
IFLP-4040DZ	-	-	ER	13	0.945 [24.0]	0.630 [16.0]	500	-	-	EB	100
IFLR-2727EZ	-	-	ER	13	0.630 [16.0]	0.630 [16.0]	1000	-	-	-	-
IFLR-4027EZ	-	-	ER	13	0.945 [24.0]	0.630 [16.0]	1000	-	-	-	-
IFLR-4031GC	-	-	ER	13	0.945 [24.0]	0.472 [12.0]	500	-	-	EB	100
IFLR-5151HZ	-	-	ER	13	0.945 [24.0]	0.630 [16.0]	450	-	-	EB	100

Revision: 11-Apr-16

1 For technical questions, contact: <u>magnetics@vishay.com</u> Document Number: 34150

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Packaging Methods

www.vishay.com

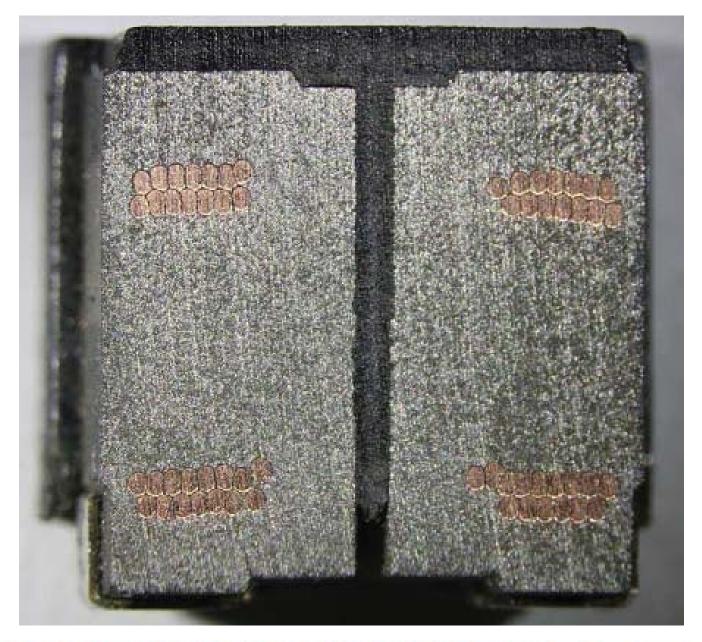
Vishay Dale

TAPE AND R	EEL in ind	ches [millir	neters] - I	Meets	EIA RS-4	481 tape and	d reel p	ackaging	standard		
	P/)E					PA	CKAGE COL	DE	
MODEL	PREVIOUS	GLOBAL CODE LEAD (Pb)- BEARING	GLOBAL CODE LEAD (Pb)-FREE	REEL SIZE	CARRIER TAPE WIDTH (W)	COMPONENT PITCH (P)	UNITS/ REEL	PREVIOUS CODE	GLOBAL CODE LEAD (Pb)- BEARING	GLOBAL CODE LEAD (Pb)-FREE	UNITS/ BULK
IFSC-0806AZ	-	-	ER	7	0.315 [8.0]	0.157 [4.0]	2000	-	-	-	-
IFSC-1008AB	-	-	ER	7	0.315 [8.0]	0.157 [4.0]	2000	-	-	-	-
IFSC-1111AZ	-	-	ER	7	0.315 [8.0]	0.157 [4.0]	2000	-	-	-	-
IFSC-1111AB	-	-	ER	7	0.315 [8.0]	0.157 [4.0]	2000	-	-	-	-
IFSC-1515AH	-	-	ER	13	0.472 [12.0]	0.315 [8.0]	2000	-	-	-	-
IHHP-0806AZ-01	-	-	ER	7	0.315 [8.0]	0.157 [4.0]	2000	-	-	-	-
IHHP-0806AB-01	-	-	ER	7	0.315 [8.0]	0.157 [4.0]	2000	-	-	-	-
IHHP-1008AZ-01	-	-	ER	7	0.315 [8.0]	0.157 [4.0]	3000	-	-	-	-
IHHP-1008AB-01	-	-	ER	7	0.315 [8.0]	0.157 [4.0]	3000	-	-	-	-
IHHP-1212ZH-01	-	-	ER	7	0.315 [8.0]	0.157 [4.0]	3000	-	-	-	-
IHHP-1212AZ-01	-	-	ER	7	0.315 [8.0]	0.157 [4.0]	3000	-	-	-	-
IHSM-3825	RC2	RE	ER	13	0.945 [24.0]	0.472 [12.0]	750	P09	PJ	EB	100
IHSM-4825	RC2	RE	ER	13	0.945 [24.0]	0.472 [12.0]	750	P09	PJ	EB	100
IHSM-5832	RC3	RF	ER	13	1.26 [32.0]	0.472 [12.0]	500	P09	PJ	EB	100
IHSM-7832	RC4	RG	ER	13	1.73 [44.0]	0.472 [12.0]	500	P09	PJ	EB	100
IDC-2512	-	-	ER	13	0.630 [16.0]	0.315 [8.0]	2000	-	-	-	-
IDC-5020	-	-	ER	13	0.630 [16.0]	0.472 [12.0]	500	-	-	-	-
IDC-7328	-	-	ER	13	0.945 [24.0]	0.945 [24.0]	250	-	-	-	-
IDCS-2512	-	-	ER	13	0.630 [16.0]	0.315 [8.0]	2000	-	-	-	-
IDCS-5020	-	-	ER	13	0.630 [16.0]	0.472 [12.0]	500	-	-	-	-
IDCS-7328	-	-	ER	13	0.945 [24.0]	0.945 [24.0]	250	-	-	-	-
IDCP-1813	-	-	ER	13	0.472 [12.0]	0.315 [8.0]	2000	-	-	-	-
IDCP-2218	-	-	ER	13	0.472 [12.0]	0.315 [8.0]	1500	-	-	-	-
IDCP-3114	-	-	ER	13	0.630 (16.0)	0.472 [12.0]	1000	-	-	-	-
IDCP-3020	-	-	ER	13	0.630 (16.0)	0.472 [12.0]	1000	-	-	-	-
IDCP-3722	-	-	ER	13	0.945 [24.0]	0.472 [12.0]	500	-	-	-	-
IDCP-3916	-	-	ER	13	0.945 [24.0]	0.472 [12.0]	500	-	-	-	-
IFCB-0402	-	-	ER	7	0.315 [8.0]	0.079 [2.0]	10 000	-	-	-	-
ILC-0402	-	-	ER	7	0.315 [8.0]	0.079 [2.0]	10 000	-	-	-	-
ILC-0603	-	-	ER	7	0.315 [8.0]	0.157 [4.0]	4000	-	-	-	-
ILC-0805	-	-	ER	7	0.315 [8.0]	0.157 [4.0]	4000	-	-	-	-
IMC-0402	-	-	ER	7	0.315 [8.0]	0.079 [2.0]	10 000	-	-	-	-
IMC-0402-01	-	-	ER	7	0.315 [8.0]	0.079 [2.0]	10 000	-	-	-	-
IMC-0603	-	-	ER	7	0.315 [8.0]	0.157 [4.0]	4000	-	-	-	-
IMC-0603-01	-	-	ER	7	0.315 [8.0]	0.079 [2.0]	3000	-	-	-	-
IMC-0805-01	-	-	ER	7	0.315 [8.0]	0.157 [4.0]	2000	-	-	-	-
IMC-1008	-	-	ER	7	0.315 [8.0]	0.157 [4.0]	2000	-	-	-	-
IMC-1210	R98/RB3 R99/RB4	SY/AN SZ/R9	ER/ET ES/EU	7 13	0.315 [8.0] 0.315 [8.0]	0.157 [4.0] 0.157 [4.0]	2000 7500	B13	BN	EB	500
IMC-1210-100	R98/RB3 R99/RB4	SY/AN SZ/R9	ER/ET ES/EU	7 13	0.315 [8.0] 0.315 [8.0]	0.157 [4.0] 0.157 [4.0]	2000 7500	B13	BN	EB	500
IMC-1812	R73/R92 R13/R91	RV/RX RQ/RW	ER/ET ES/EU	7 13	0.472 [12.0] 0.472 [12.0]	0.315 [8.0] 0.315 [8.0]	500 2000	B13	BN	EB	500
IMCH-1812	-	-	ER	7	0.472 [12.0]	0.315 [8.0]	500	-	-	-	-
IMC-2220	-	-	ER	13	0.630 [16.0]	0.472 [12.0]	1000	-	-	-	-

2

Document Number: 34150

For technical questions, contact: <u>magnetics@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>



Production Part Approval Process The following PPAP documentation is assembled according toAIAG, 4th Edition PPAP Manual and applicable customer requirements

Cross Section Photo

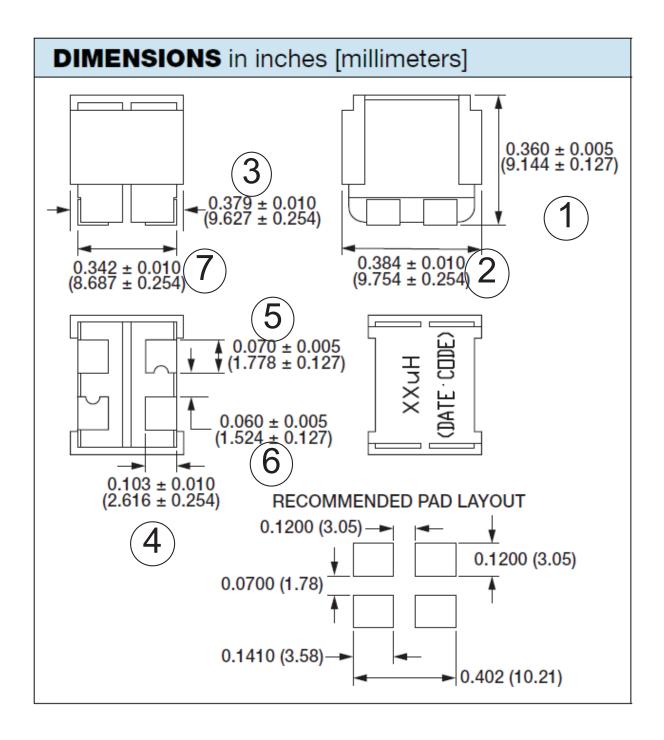
IHLD3232HBER100M5A

Production Part Approval Process The following PPAP documentation is assembled according to AIAG, 4th Edition PPAP Manual and applicable customer requirements

Use the control buttons below to navigate through the PPAP sections.

Section 2: Engineering Change Documents

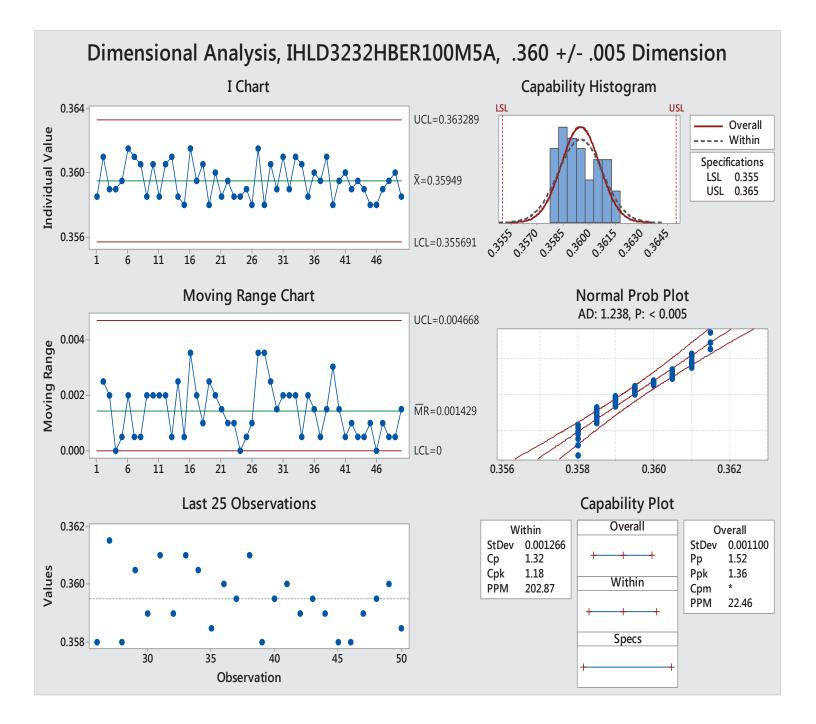
There are no applicable Engineering Change Documents for this part number.

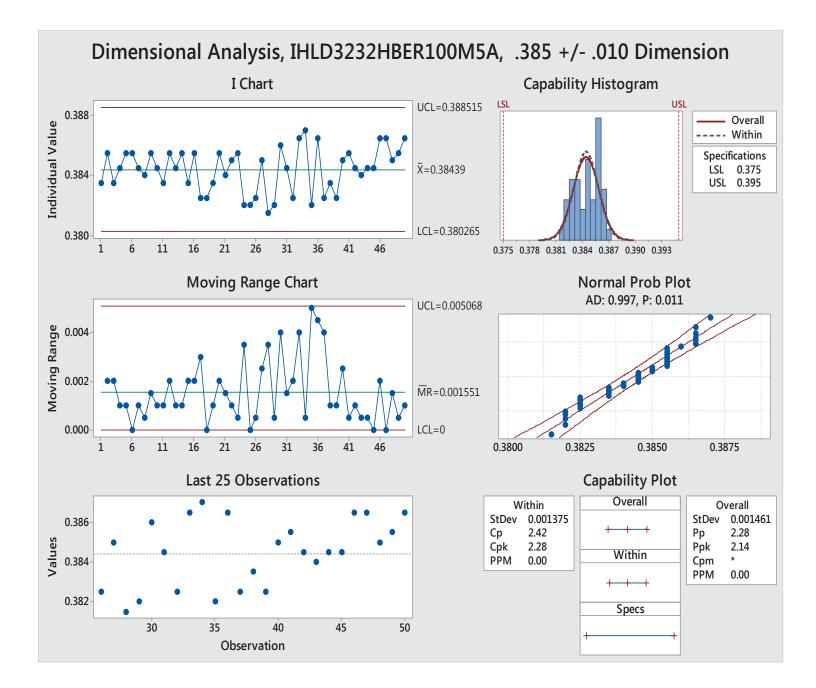

Production Part Approval Process The following PPAP documentation is assembled according to AIAG, 4th Edition PPAP Manual and applicable customer requirements

Use the control buttons below to navigate through the PPAP sections.

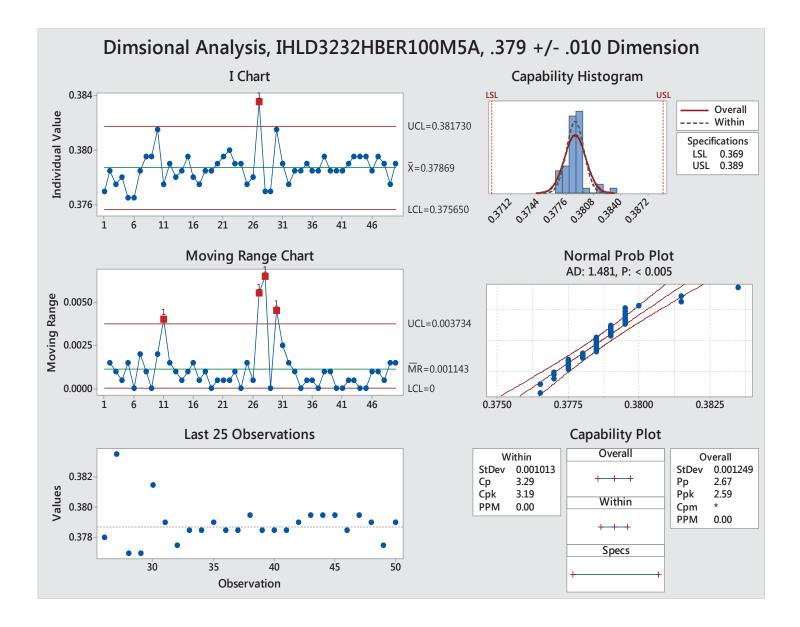
Section 3: Customer Engineering Approval

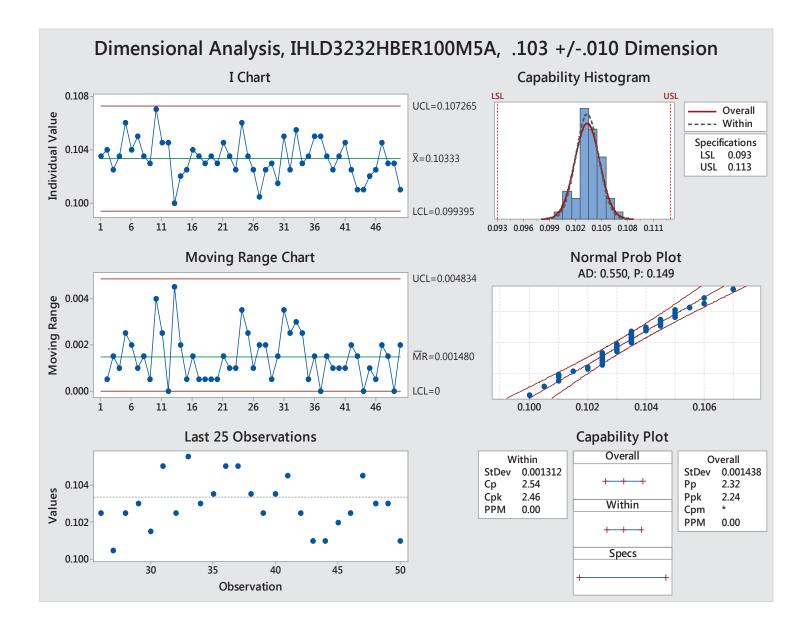
Customer Engineering Approval does not apply for this part number

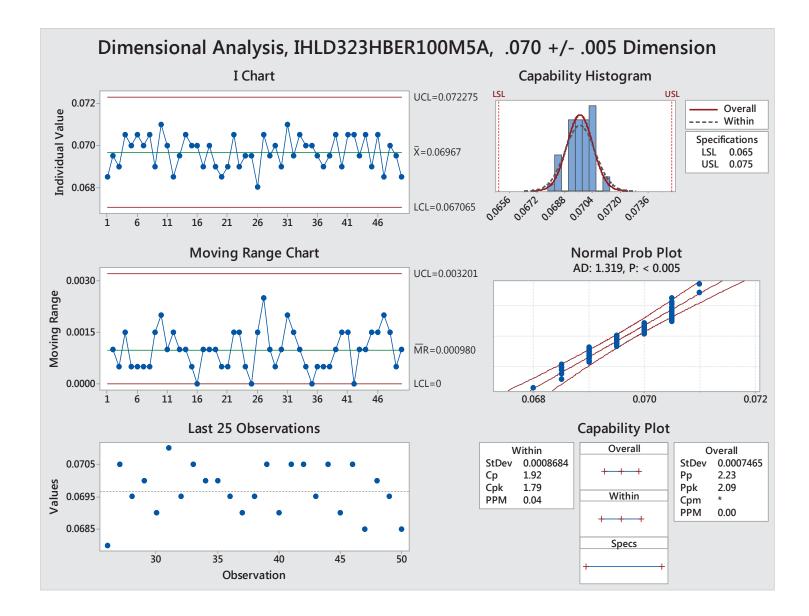


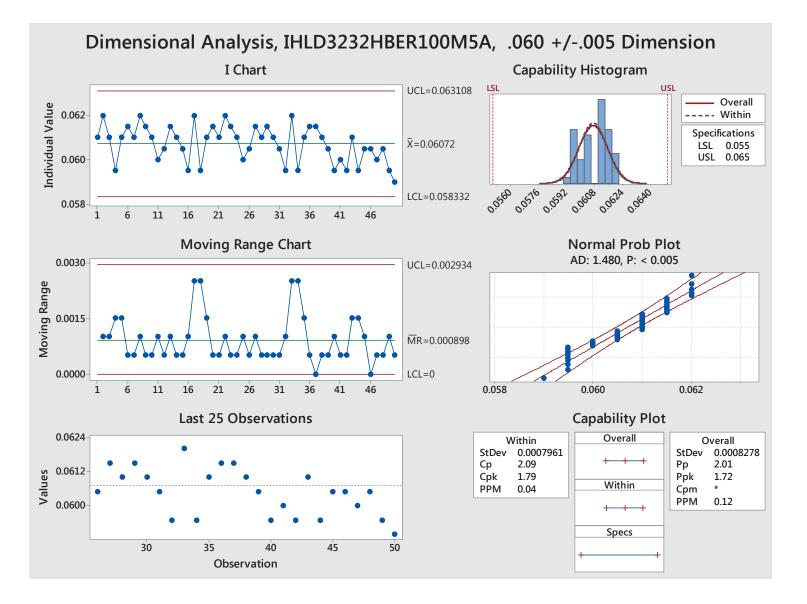


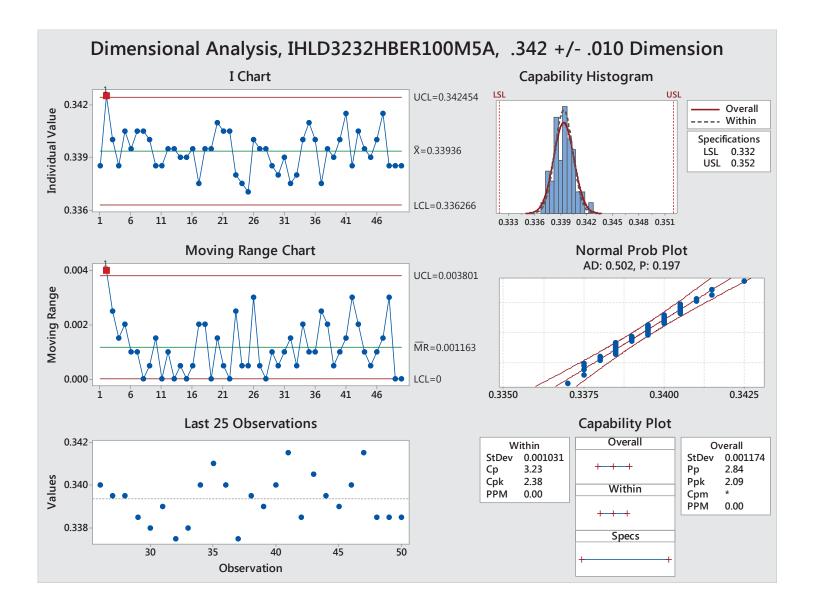
Nominal	0.36	0.384	0.379	0.103	0.07	0.06	0.342
Min	0.355	0.374	0.369	0.093	0.065	0.055	0.332
Max	0.365	0.394	0.389	0.113	0.075	0.065	0.352
1	0.3585	0.3835	0.377	0.1035	0.0685	6 0.061	7 0.3385
2	0.361	0.3855	0.3785	0.104	0.0695	0.062	0.3425
3	0.359	0.3835	0.3775	0.1025	0.069	0.061	0.34
4	0.359	0.3845	0.378	0.1035	0.0705	0.0595	0.3385
5	0.3595	0.3855	0.3765	0.106	0.07	0.061	0.3405
6	0.3615	0.3855	0.3765	0.104	0.0705	0.0615	0.3395
7	0.361	0.3845	0.3785	0.105	0.07	0.061	0.3405
8	0.3605	0.384	0.3795	0.1035	0.0705	0.062	0.3405
9	0.3585	0.3855	0.3795	0.103	0.069	0.0615	0.34
10	0.3605	0.3845	0.3815	0.107	0.071	0.061	0.3385
11	0.3585	0.3835	0.3775	0.1045	0.07	0.06	0.3385
12	0.3605	0.3855	0.379	0.1045	0.0685	0.0605	0.3395
13	0.361	0.3845	0.378	0.1	0.0695	0.0615	0.3395
14	0.3585	0.3855	0.3785	0.102	0.0705	0.061	0.339
15	0.358	0.3835	0.3795	0.1025	0.07	0.0605	0.339
16	0.3615	0.3855	0.378	0.104	0.07	0.0595	0.3395
17	0.3595	0.3825	0.3775	0.1035	0.069	0.062	0.3375
18	0.3605	0.3825	0.3785	0.103	0.07	0.0595	0.3395
19	0.358	0.3835	0.3785	0.1035	0.069	0.061	0.3395
20	0.36	0.3855	0.379	0.103	0.0685	0.0615	0.341
21	0.3585	0.384	0.3795	0.1045	0.069	0.061	0.3405
22	0.3595	0.385	0.38	0.1035	0.0705	0.062	0.3405
23	0.3585	0.3855	0.379	0.1025	0.069	0.0615	0.338
24	0.3585	0.382	0.379	0.106	0.0695	0.061	0.3375
25	0.359	0.382	0.3775	0.1035	0.0695	0.06	0.337
26	0.358	0.3825	0.378	0.1025	0.068	0.0605	0.34
27	0.3615	0.385	0.3835	0.1005	0.0705	0.0615	0.3395
28	0.358	0.3815	0.377	0.1025	0.0695	0.061	0.3395
29	0.3605	0.382	0.377	0.103	0.07	0.0615	0.3385
30	0.359	0.386	0.3815	0.1015	0.069	0.061	0.338
31	0.361	0.3845	0.379	0.1015	0.071	0.0605	0.339
32	0.359	0.3825	0.375	0.1025	0.0695	0.0595	0.3375
33	0.361		0.3785	0.1055	0.0705		0.338
34	0.3605	0.387	0.3785	0.103		0.0595	0.33
35	0.3585	0.382	0.379	0.1035	0.07	0.061	0.341
36	0.36		0.3785	0.105	0.0695	0.0615	0.341
37	0.3595	0.3825	0.3785	0.105	0.069	0.0615	0.3375
38	0.3553	0.3835	0.3785	0.1035	0.0695	0.061	0.3395
39					0.0705		
40	0.358		0.3785	0.1025	0.0705	0.0605	0.339
	0.3595	0.385	0.3785	0.1035		0.0595	0.34
41	0.36		0.3785	0.1045	0.0705	0.06	0.3415
42	0.359	0.3845	0.379	0.1025	0.0705	0.0595	0.3385
43	0.3595	0.384	0.3795	0.101	0.0695	0.061	0.3405
	0.359	0.3845	0.3795	0.101	0.0705	0.0595	0.3395
45	0.358	0.3845	0.3795	0.102	0.069	0.0605	0.339
46	0.358	0.3865	0.3785	0.1025	0.0705		0.34
47	0.359	0.3865	0.3795	0.1045	0.0685		0.3415
48	0.3595	0.385	0.379	0.103	0.07	0.0605	0.3385
49	0.36		0.3775	0.103	0.0695	0.0595	0.3385
50	0.3585	0.3865	0.379	0.101	0.0685	0.059	0.3385











SECTION 10 PERFORMANCE TEST RESULTS IHLD3232HB-5A

DANSHUI, CHINA MANUFACTURING LOCATION

Test#	Description	Ref. Spec Meth / Cond	Test Conditions	End Point ∆ Requirements	Sample Size	Meas Temp	Summary Statistics			A L1-2	Results					B L3-4	Results		
0	Preconditioning for lead-free products	AEC-Q200 Rev C - Pb Free Specific Tests Table 4.2	As specified in sections 4.3.1 thru 4.3.3 except Visual per DPS-11,865 10X magnification	N/A	552	N/A	N/A			N	/A					N			
									luctance (u	,	DC R	Resistance	(mΩ)		ductance (u	H)		Resistance ((mΩ)
1	Pre-mount Tolerance Check	IHLP Data Sheet	L (µH) - 100kHz and 250mV DCR - 25°C Ambient	L=±20% of initial, DCR =±20% of	3	25 ± 5°C	Maximum	Initial/ 10.3		%∆ 3.846		Initial Final 49.010		Initial 10.4	/Final 4589	%∆ 4.589		Initial Final 49.240	
	Tolerance Check		BOK - 23 C Ambient	initial		(Ambient Temp)	Minimum Mean	9.43 9.98		-5.651 -0.1769		48.740 48.8800		9.3		-6.696 -1.1981		48.710 48.9600	
							Std Dev	0.49	118	4.9118 Pa		0.1353		0.56	6481	5.6481 Pa		0.2663	
									luctance (u	H)	DC F	Resistance			ductance (u	H)	DC F	Resistance (
			T = +125°C for A1/1A models				Maximum	Initial 10.2039	Final 10.8719	%∆ 6.994	Initial 34.110	Final 33.540	%Δ 0.479	Initial 10.2902	Final 10.8703	%∆ 6.765	Initial 34.170	Final 33.450	%∆ 0.662
			$T = +155^{\circ}C$ for -5A models $T = +180^{\circ}C$ for -8A models			-55°C	Minimum Mean	8.5749 9.46401	9.0444	3.930 5.8234	32.960 33.3529	32.300 32.8138	-3.958 -1.6108	8.4515 9.32283	8.8953 9.85452	4.670 5.6911	32.820 33.3286	32.380 32.8175	-3.630 -1.5267
							Std Dev	0.51264	0.57436	0.5913	0.2568	0.2558	1.0537	0.51654	0.56796	0.4535	0.2887	0.2330	1.0410
			Duration = 2000 hours Power = Unpowered	L=±20% of initial.			-	Ind Initial	luctance (u Final	H) %Δ	DC F	Resistance (Final	(mΩ) %Δ	Initial	ductance (u Final	H) %∆	DC F Initial	Resistance (Final	mΩ) %Δ
2	High Temperature Exposure	IEC-60068 Part 2-2 test group BA	Power = Onpowered	DCR =±20% of milital,	77		Maximum	10.2787	10.9413	7.010	48.590	48.930	1.158	10.3824	10.9534	6.692	48.530	48.890	1.292
	Exposule	GLOOD BY	Readings at 0, 250, 500, 1000, 2000 hr intervals Initial and final readings at LT/RT/HT	initial		25°C	Minimum Mean	8.6248 9.53206	9.1256	4.621 5.9159	47.450 48.0496	47.100 47.9043	-1.644 -0.3028	8.5167 9.39800	8.9690 9.93582	4.694 5.7129	47.230 48.0157	47.220 47.9105	-1.036 -0.2187
							Std Dev	0.51703	0.57367	0.5682	0.2263	0.4105	0.6624	0.52145	0.56944	0.4382	0.2227	0.3552	0.6355
			HT = +125°C for A1/1A models				-		luctance (u			Resistance			ductance (u			Resistance (
			$HT = +155^{\circ}C$ for -5A models $HT = +180^{\circ}C$ for -8A models				Maximum	Initial 10.3071	Final 11.2779	%∆ 10.174	Initial 72.860	Final 72.170	%∆ 1.080	Initial 10.3737	Final 11.2997	%∆ 10.028	Initial 72.570	Final 72.100	%∆ 1.111
						155°C	Minimum	8.6275	9.3465	7.264	70.170	69.760	-2.080	8.5167	9.1765	7.190	70.100	69.600	-2.043
							Mean Std Dev	9.52455 0.50949	10.37694	8.9219 0.7857	71.5153	70.8869	-0.8762 0.6859	9.39055 0.51815	10.20724 0.60769	8.6726	71.4652	70.9096	-0.7753

CAPACITORS • DIODES • INDUCTORS • MOSFETS • OPTOELECTRONICS • RESISTORS

										Pa	ISS					Pa	ass		
								Inc	luctance (u	H)	DC F	lesistance	(mΩ)	In	ductance (u	H)	DC F	Resistance	(mΩ)
								Initial	Final	%∆	Initial	Final	%∆	Initial	Final	%Δ	Initial	Final	%Δ
							Maximum		10.4531	1.995	33.970	33.770	1.472	10.4083	10.5584	1.905	34.010	33.780	1.568
			T = -55°C for all models			-55°C	Minimum	8.4434	8.5813	1.060	32.780	32.570	-2.747	8.4205	8.5565	1.157	32.830	32.640	-2.705
							Mean	9.38150	9.52292	1.5116	33.3451	33.0994	-0.7339	9.39171	9.53342	1.5134	33.3608	33.1351	-0.6735
			Duration = 2000 hours				Std Dev	0.51055	0.51106	0.1277	0.2109	0.2373	0.8475	0.55471	0.55595	0.1245	0.2313	0.2539	0.8583
			Power = Unpowered					Inc	luctance (u	H)	DC F	lesistance	(mΩ)	In	ductance (u	H)	DC F	Resistance	(mΩ)
	Low Temperature	IEC-60068 Part 2-1 test		L=±20% of initial,				Initial	Final	%∆	Initial	Final	%∆	Initial	Final	%∆	Initial	Final	%∆
3	Storage	group Aa	Readings at 0, 250, 500, 1000, 2000 hr intervals	DCR =±20% of	77		Maximum		10.5223	1.909	48.620	49.300	2.534	10.5102	10.6344	1.721	48.510	49.240	2.647
	otorago	group / ta	Initial and final readings at LT/RT/HT	initial		25°C	Minimum	8.5008	8.6263	1.064	47.190	47.410	-0.873	8.4876	8.6056	0.310	47.500	47.370	-0.544
							Mean		9.57634	1.3552	48.0717	48.1208	0.1028	9.46765	9.59312	1.3313		48.1721	0.1364
			HT = +125°C for A1/1A models				Std Dev	0.51410	0.51304	0.1361	0.2448	0.3970	0.7476	0.56222	0.56002	0.1814	0.2379	0.4125	0.7042
			HT = +155°C for -5A models					Inc	luctance (u	H)	DC F	esistance	(mΩ)	In	ductance (u	H)	DC F	Resistance	(mΩ)
			HT = +180°C for -8A models					Initial	Final	%∆	Initial	Final	%∆	Initial	Final	%Δ	Initial	Final	%∆
							Maximum	10.3793	10.4918	1.454	72.530	72.230	1.530	10.5018	10.6117	1.442	72.680	72.370	1.175
						155°C	Minimum	8.4950	8.6039	0.857	70.320	69.850	-1.780	8.4762	8.5867	0.154	70.090	69.940	-1.466
							Mean	9.44005	9.54463	1.1120	71.5684	71.1542	-0.5770	9.46151	9.55884	1.0330	71.6052	71.2468	-0.4990
							Std Dev	0.50870	0.50714	0.1224	0.4875	0.5425	0.7061	0.55718	0.55636	0.2138	0.5193	0.5511	0.6309

CAPACITORS • DIODES • INDUCTORS • MOSFETS • OPTOELECTRONICS • RESISTORS

Test #	Description	Ref. Spec Meth / Cond	Test Conditions	End Point ∆ Requirements	Sample Size	Meas Temp	Summary Statistics			A L1-2	Results					B L3-4	Results		
										Pa	ISS					Pa	ass		
								Inc	ductance (u	H)	DC F	Resistance	(mΩ)	Inc	luctance (u	H)	DC F	Resistance	(mΩ)
			T = -55°C to +125°C for A1/1A models					Initial	Final	%∆	Initial	Final	%∆	Initial	Final	%∆	Initial	Final	%∆
			$T = -55^{\circ}C$ to $+125^{\circ}C$ for $-5A$ models				Maximum	10.3366	10.5287	2.837	33.990	33.870	1.428	10.3749	10.5518	2.837	34.220	34.140	1.698
			$T = -55^{\circ}C$ to +155°C for -8A models			-55°C	Minimum	8.5147	8.7251	1.301	32.220	32.560	-1.143	8.6094	8.7666	1.273	32.400	32.570	-1.102
			1 = -55 C to + 155 C to - 54 Illodels				Mean	9.43203	9.62568	2.0455	33.3183	33.1435			9.80081	2.0811	33.3294	33.1784	-0.4521
			Dwell time = 30 min				Std Dev	0.49786	0.52268	0.3221	0.2779	0.2930	0.4357	0.54110	0.56089	0.3187	0.2932	0.2990	0.4215
								Inc	ductance (u		DC F	Resistance			luctance (u	H)	DC F	Resistance	
		ling 2 14 test group Na Power = Uppowered DCR =±20	L=±20% of initial,				Initial	Final	%∆	Initial	Final	%∆	Initial	Final	%∆	Initial	Final	%∆	
4	Temperature Cycling		Transfer time ≤10 sec b, Part Duration = 1000 cycles DCR =± DCR =±		77		Maximum	10.4181	10.5649	2.540	48.420	47.920	0.319	10.4690	10.6194	2.790	48.550	48.130	1.046
		5 5 b		initial		25°C	Minimum	8.5716	8.7690	0.952	47.050	47.020	-2.148	8.6745	8.8124	0.876	46.830	46.800	-2.208
			Transfer time ≤10 sec L=±20% or EC-60068, Part Duration = 1000 cycles DCR =±2 14 test group Na Power = Unpowered DCR =±2				Mean	9.49841	9.67098	1.8118	47.9684	47.5560	-0.8589	9.67928	9.85823	1.8469	47.9766	47.6071	-0.7686
							Std Dev	0.50150	0.52088	0.3382	0.2579	0.2277	0.3606	0.54844	0.56292	0.3632	0.3090	0.2633	0.4524
			HT = +125°C for A1/1A models				-	Inc	ductance (u		DC F	Resistance			luctance (u			Resistance	
			HT = +155°C for -5A models					Initial	Final	%∆	Initial	Final	%∆	Initial	Final	%∆	Initial	Final	%∆
			HT = +180°C for -8A models				Maximum	10.4185	10.7696	4.575	72.250	72.130	0.810	10.4642	10.8229	4.764	72.570	72.480	0.786
						155°C	Minimum	8.5826	8.9088	2.629	69.920	69.640	-1.224	8.6572	8.9384	2.503	69.950	69.700	-1.230
							Mean	9.48658	9.82744	3.5776	71.3229	71.0338	-0.4049		10.02282	3.7083	71.3684	71.1165	-0.3530
		re Cycling 2.14 test group Na Duration = 1000 cycles DCR =±20% of 7' 2.14 test group Na Power = Unpowered Initial Initial and final readings at LT/RT/HT HT = +125°C for A1/1A models HT = +155°C for -5A models	1		Std Dev	0.49410	0.54161	0.4751	0.4756	0.4773	0.3204	0.54261	0.58871	0.5029	0.5027	0.5347	0.2624		

CAPACITORS • DIODES • INDUCTORS • MOSFETs • OPTOELECTRONICS • RESISTORS

										Pa	ISS					Pa	ass		
								Inc	ductance (u	H)	DC F	Resistance	(mΩ)	Inc	ductance (u	H)	DC	Resistance	(mΩ)
								Initial	Final	%∆	Initial	Final	%∆	Initial	Final	%Δ	Initial	Final	%Δ
							Maximum	10.3675	10.5187	2.262	33.470	34.020	3.030	10.2443	10.3760	2.000	33.660	34.180	2.812
			$T = 85^{\circ}C \pm 20^{\circ}C$			-55°C	Minimum	8.1834	8.3400	0.973	32.170	32.870	-0.269	8.0833	8.2239	0.917	32.350	33.030	-0.090
			RH = 85% ± 5%				Mean	9.41455	9.56116	1.5635	32.8623	33.4627	1.8307	9.29059	9.42801	1.4867	32.8595	33.4321	1.7464
							Std Dev	0.60367	0.60436	0.2395	0.2724	0.2314	0.7429	0.55198	0.54836	0.2212	0.2752	0.2213	0.7180
			Duration = 1000 hours					Inc	ductance (u	H)	DC F	Resistance	(mΩ)	Inc	ductance (u	H)	DC	Resistance	(mΩ)
		IEC-60068 Part 2-	Power = No Power	L=±20% of initial,				Initial	Final	%∆	Initial	Final	%∆	Initial	Final	%∆	Initial	Final	%∆
6	Bias Humidity	67		DCR =±20% of	77		Maximum	10.4439	10.5719	2.164	48.380	49.310	3.309	10.3208	10.4237	1.915	48.310	49.310	3.159
		0.	Initial and final readings at LT/RT/HT	initial		25°C	Minimum	8.2472	8.3985	-1.101	46.880	48.090	1.668	8.1522	8.2844	0.663	47.180	48.290	1.234
							Mean	9.48231	9.61321	1.3925	47.7639	48.8139	2.1991	9.36238	9.48391	1.3098	47.7639	48.7713	2.1096
			HT = +125°C for A1/1A models				Std Dev	0.60472	0.59647	0.4008	0.2592	0.2347	0.3257	0.55476	0.54334	0.2655	0.2318	0.2323	0.2966
			HT = +155°C for -5A models					Inc	ductance (u	H)	DC F	Resistance	(mΩ)	Inc	ductance (u	H)	DC	Resistance	(mΩ)
			HT = +180°C for -8A models					Initial	Final	%∆	Initial	Final	%∆	Initial	Final	%∆	Initial	Final	%∆
							Maximum	10.4593	10.5845	2.025	72.230	73.930	4.098	10.3574	10.4337	1.970	72.230	73.740	6.453
						155°C	Minimum	8.2564	8.3945	0.932	69.280	71.620	1.523	8.1825	8.3187	0.737	69.270	71.430	1.620
							Mean	9.48757	9.62916	1.5029	70.9342	72.8796	2.7457	9.36866	9.50148	1.4284	70.9010	72.8157	2.7034
							Std Dev	0.60041	0.59381	0.2388	0.5925	0.4948	0.6267	0.54118	0.53166	0.2699	0.5343	0.5018	0.7105

CAPACITORS • DIODES • INDUCTORS • MOSFETS • OPTOELECTRONICS • RESISTORS

Test #	Description	Ref. Spec Meth / Cond	Test Conditions	End Point ∆ Requirements	Sample Size	Meas Temp	Summary Statistics			A L1-2	Results					B L3-4	Results		
										Pa	ass					Pa	ISS		
								Inc	ductance (u	IH)	DC F	Resistance	(mΩ)	Inc	ductance (u	H)	DC F	lesistance	(mΩ)
								Initial	Final	%Δ	Initial	Final	%Δ	Initial	Final	%∆	Initial	Final	%Δ
			T = 85°C for -1A/A1 models				Maximum	10.3205	10.5798	3.721	34.040	33.400	0.610	10.0443	10.3200	3.349	34.070	33.260	0.365
			T =115°C for -5A models			-55°C	Minimum	8.2055	8.4346	2.265	32.590	32.160	-3.819	8.1094	8.3326	1.928	32.680	32.000	-3.981
			T =140°C for -8A models				Mean	9.13422	9.39315	2.8288	33.2777	32.6730	-1.8121	9.13225	9.37720		33.1891	32.5334	-1.9717
							Std Dev	0.48975	0.51408	0.3517	0.2920	0.2645	0.9357	0.48539	0.50971		0.2639	0.2660	0.9095
			Duration = 2000 hrs				-		luctance (u			Resistance			ductance (u			lesistance	
		MIL-STD-202.	Power = 100% rated current continuous	L=±20% of initial,				Initial	Final	%∆	Initial	Final	%∆	Initial	Final	%Δ	Initial	Final	%Δ
7	Operational Life	Method 108A		DCR =±20% of	77		Maximum	10.3975	10.7258	4.499	48.990	48.870	2.216	10.1117	10.4787	4.085	49.080	48.960	1.798
			Readings at 0, 250, 500, 1000, 2000 hr intervals	initial		25°C	Minimum	8.2567	8.5448	2.705	46.480	46.780	-2.812	8.1791	8.4434	2.665	47.070	46.450	-2.987
			Initial and final readings at LT/RT/HT				Mean	9.19043	9.51707	3.5488	48.0162	47.6279	-0.8026		9.51514		47.9323	47.3868	-1.1328
							Std Dev		0.51672	0.3603	0.5407	0.5542	1.1446		0.51542		0.5101	0.5269	1.0867
			HT = +125°C for A1/1A models						luctance (u			Resistance			ductance (u			tesistance	
			$HT = +155^{\circ}C$ for -5A models $HT = +180^{\circ}C$ for -8A models					Initial	Final	%∆	Initial	Final	%∆	Initial	Final	%∆	Initial	Final	%∆
			HI = +180°C for -8A models			1000	Maximum	10.3943	10.8140	6.123	72.280	72.040	2.390	10.1194	10.5897	5.909	71.730	71.580	2.026
						155°C	Minimum	8.2665	8.5642	3.426	69.820	69.180	-2.270	8.2000	8.5048	3.295	69.300	68.540	-2.551
							Mean Std Dev	9.19722	9.62071	4.5916	70.8864	70.6191	-0.3748 0.8818	9.20319 0.47073	9.63163 0.52468	4.6391 0.6380	70.6623	70.0581	-0.8516 0.9364
							Std Dev	0.4//2/	0.52423	0.6080	0.5772	0.6998	0.8818	0.47073	0.52468	0.6380	0.5809	0.6405	0.9364
8	External Visual Insp.	MIL-STD-883 Method 2009	Inspect device construction, workmanship and marking. Electrical testing not req.	Pass criteria defined in DPS- 11,865VA1	30	N/A	N/A						Pa	ass					
9	Dimensions	JESD22, Method JB-100	Verify physical dimensions to part specification	All parts within dimensional tolerance	30	N/A	N/A						Pa	355					
10	Resistance to Solvents	MIL-STD-202 Method 215	OKEM clean or equivalent	Pass criteria defined in DPS- 11,865VA1	5	N/A	N/A						Pa	ass					

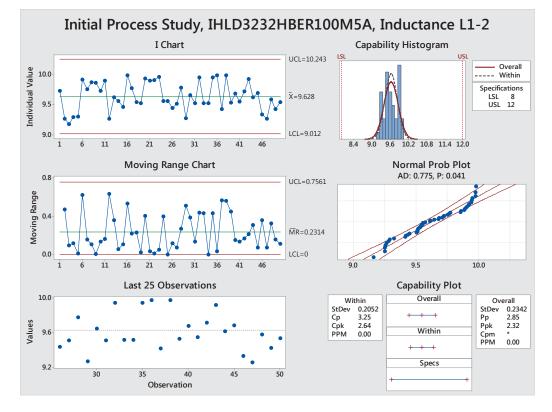
CAPACITORS • DIODES • INDUCTORS • MOSFETS • OPTOELECTRONICS • RESISTORS

										Pa	ISS					Pa	ISS		
								Inc	luctance (ul	H)	DC R	lesistance	(mΩ)	Inc	ductance (u	H)	DC F	Resistance ((mΩ)
								Initial	Final	%Δ	Initial	Final	%Δ	Initial	Final	%Δ	Initial	Final	%∆
							Maximum	10.0434	10.1046	1.085	33.560	33.770	1.412	10.0746	10.1064	0.995	33.590	33.730	1.408
			Pulse Shape = Half Sine			-55°C	Minimum	8.1515	8.1776	0.255	32.230	32.490	-0.450	8.2587	8.3183	0.066	32.410	32.720	-0.210
			Normal Pulse Length = 6ms				Mean	9.04167	9.09155	0.5515	32.7600	33.0207	0.7985	9.22154	9.26672	0.4905	32.8400	33.1147	0.8387
			Peak Acceleration = 100g				Std Dev	0.54837	0.55190	0.2561	0.3363	0.2689	0.4365	0.52058	0.52255	0.2475	0.3106	0.2522	0.4118
			No. shocks = 6 each in both directions of each					Inc	luctance (ul	H)	DC R	lesistance	(mΩ)	Inc	ductance (u	H)	DC F	Resistance ((mΩ)
		IEC-60068 part	axis (total of 36)	L=±20% of initial,				Initial	Final	%Δ	Initial	Final	%Δ	Initial	Final	%Δ	Initial	Final	%∆
11	Mechanical Shock	2.27 test group Ea		DCR =±20% of	30		Maximum	10.1034	10.1742	1.217	48.100	48.600	1.430	10.1555	10.1929	1.263	48.260	48.800	1.799
		2.21 toot group 24	Initial and final readings at LT/RT/HT	initial		25°C	Minimum	8.2066	8.2296	0.176	46.970	46.990	0.043	8.3167	8.3868	0.104	47.170	47.520	0.334
							Mean	9.10126	9.15301	0.5697	47.5850	47.9823	0.8342	9.28762	9.33733	0.5360	47.6890	48.1353	0.9357
			HT = +125°C for A1/1A models				Std Dev	0.54789	0.54972	0.3042	0.2836	0.3834	0.3400	0.52202	0.52458	0.3063	0.2784	0.3439	0.3418
			HT = +155°C for -5A models					Inc	luctance (ul	H)	DC R	lesistance	(mΩ)	Inc	ductance (u	H)	DC F	Resistance ((mΩ)
			HT = +180°C for -8A models					Initial	Final	%Δ	Initial	Final	%Δ	Initial	Final	%Δ	Initial	Final	%∆
							Maximum	10.1309	10.1419	0.470	71.170	71.620	2.204	10.1305	10.1302	0.411	71.360	72.190	2.131
						155°C	Minimum	8.1761	8.1905	0.007	69.260	69.040	-0.318	8.3134	8.3231	-0.181	69.790	70.230	-0.070
							Mean	9.08769	9.09936	0.1295	70.2867	70.6657	0.5391	9.26443	9.27526	0.1185	70.4573		0.6604
				l			Std Dev	0.53921	0.53832	0.0878	0.4070	0.6154	0.6438	0.51836	0.51651	0.1167	0.4043	0.5346	0.5809

CAPACITORS • DIODES • INDUCTORS • MOSFETS • OPTOELECTRONICS • RESISTORS

Test#	Description	Ref. Spec Meth / Cond	Test Conditions	End Point ∆ Requirements	Sample Size	Meas Temp	Summary Statistics			A L1-2	Results					B L3-4	Results		
								Ind	luctance (u	Pa (H)		Resistance	(mO)	Inc	ductance (ul	Pa H)		Resistance	(m0)
			Pulse Shape = sine wave				Maximum	Initial 9.8223	Final 9.9276	%∆ 1.136	Initial 33.570	Final 33.830	%∆ 2.563	Initial 9.6739	Final 9.7001	%Δ 1.253	Initial 33.640	Final 33.870	2.43
			Range of frequency 1 = 10 - 55Hz Amplitude = ±0.75mm			-55°C	Minimum Mean	8.1367 8.79379	8.1776 8.84920	0.414	32.710 33.0223	33.030 33.3980	-0.508 1.1408	8.0762 8.86779	8.1099 8.91407	-0.372 0.5277	32.570 33.0293	33.000 33.4107	-0.4
			Range of frequency 2 = 55 - 2000Hz Amplitude = 10G				Std Dev	0.53139	0.53905 luctance (u	0.1848	0.2121	0.1701 Resistance	0.7132	0.47220	0.46494 ductance (ul	0.2669	0.2347	0.2240 Resistance	0.67 (mΩ)
		IEC-60068 PART	Frequency Sweep: 1 oct./min	L=±20% of initial.				Initial	Final	M %Δ	Initial	Final	(IIIII) %	Initial	Final	Π) %Δ	Initial	Final	(IIII2) %/
12	Vibration	2-6 TEST GROUP	Duration: 24 h each of 3 axis	DCR =±20% of	30		Maximum	10.0081	9.9758	-0.244	48.020	48.140	1.037	9.8808	9.7877	0.001	48.160	48.140	1.05
		Fc.		initial		25°C	Minimum	8.3129	8.2406	-1.103	47.240	47.140	-0.524	8.2721	8.1743	-1.747	46.930	47.050	-0.4
			Initial and final readings at LT/RT/HT				Mean Std Dev	8.97906	8.90352	-0.8474	47.6120	47.7157	0.2183	9.06044	8.98255 0.46594	-0.8572	47.6127	47.7377	0.26
			HT = +125°C for A1/1A models				Stu Dev		Juctance (u			Resistance			ductance (ul			esistance	(mΩ)
			HT = +155°C for -5A models					Initial	Final	%∆	Initial	Final	%∆	Initial	Final	%Δ	Initial	Final	%
			HT = +180°C for -8A models				Maximum	10.0511	9.9238	-1.145	71.800	72.190	1.305	9.8649	9.7122	-1.141	72.400	72.440	1.3
						155°C	Minimum	8.3204	8.1886	-1.791	70.570	70.430	-0.864	8.2661	8.1136	-1.887	70.100	70.550	-0.8
							Mean	8.98706	8.85049	-1.5266	71.1010	71.3523	0.3545	9.06311	8.92765 0.44934	-1.4985	71.1113	71.3813	0.3
							Std Dev	0.52676	0.53019	0.1565 Pr		0.4415	0.6192	0.44860	0.44934	0.2004 Pa		0.4933	0.6
							Ind	luctance (u			Resistance	(mQ)	Inc	ductance (ul			Resistance	(m0)	
								Initial	Final	%Δ	Initial	Final	%Δ	Initial	Final	%Δ	Initial	Final	%
							Maximum	9.6789	9.8382	2.677	33.660	33.450	1.536	9.5024	9.6954	2.574	33.660	33.520	1.5
			Pulse shape: half sine			-55°C	Minimum	8.1179	8.2946	1.496	32.460	32.500	-1.396	8.2647	8.4655	1.448	32.520	32.570	-1.
			Nominal pulse length: 6 ms				Mean	8.88194	9.06056	2.0198	32.9990	33.0010	0.0100	8.88542	9.06240	1.9955	33.0440	33.0347	-0.0
			Peak Acceleration: 40g				Std Dev	0.52323	0.52077 Juctance (L	0.3861		0.2423 Resistance	0.7088		0.40577 ductance (u	0.3115	0.2414	0.1841 Resistance	0.7 (mO)
			No. of shocks: 4000 each mechanical axis.	L=±20% of initial.				Initial	Final	%Δ	Initial	Final	%Δ	Initial	Final	%Δ	Initial	Final	(1162)
13	Bump	IEC-60068 part 2- 29 test group Eb	Initial and final readings at LT/RT/HT	DCR =±20% of	30		Maximum	9.7488	9.8997	2.615	48.720	48.970	1.367	9.5556	9.7511	2.614	48.680	48.950	1.2
		group ED	initial and inal readings at ET/RT/TT	initial		25°C	Minimum	8.1682	8.3445	1.415	47.400	47.320	-0.884	8.3329	8.5277	1.388	47.380	47.320	-0.8
			HT = +125°C for A1/1A models				Mean	8.94316	9.11157	1.8928	48.1137	48.1453	0.0668	8.95336	9.12605	1.9327	48.1540	48.1890	0.07
			HT = +155°C for -5A models				Std Dev	0.52457	0.51971 Juctance (u	0.3827	0.3463	0.3701 Resistance	0.5281	0.40204	0.40291 ductance (u	0.3560	0.2686 DC F	0.3432 Resistance	0.5 ⁴ (mΩ)
			HT = +180°C for -8A models				r	Initial	Final	M) %Δ	Initial	Final	(IIII) %	Initial	Final	Π) %Δ	Initial	Final	(1112)
							Maximum	9.6767	9,7973	1.645	71.120	72.200	2.416	9.5268	9.6630	1.666	71.410	72.060	1.9
						155°C	Minimum	8.1452	8.2718	1.219	69.540	69.700	-0.481	8.3369	8.4642	1.230	69.960	69.910	-0.
							Mean	8.91349	9.04042	1.4292	70.5710	70.9930	0.5992	8.92633	9.05793	1.4763	70.6837	71.0513	0.5
							Std Dev	0.50785	0.50678	0.1365 Pa	0.4175	0.5876	0.7728	0.38897	0.39055	0.1107	0.4202	0.4840	0.7
								Ind	luctance (u			Resistance	(m0)	Inc	ductance (ul	Pa		esistance	(m0)
				L=±20% of initial.				Initial	Final	%∆	Initial	Final	%Δ	Initial	Final	%Δ	Initial	Final	(1112)
		MIL-STD-202 Method 210	Condition K, except temperature to be 260°C +/- 5°C	DCR =±20% of	30	25 ± 5°C	Maximum	9.8504	9.8594	0.804	48.820	49.020	0.952	9.6729	9.6712	0.840	48.780	49.020	0.
4	Resistance to		except temperature to be 200 C +/- 5 C	initial		(Ambient	Minimum	8.0744	8.1359	-0.554	47.920	48.110	-0.942	8.0315	8.0855	-0.657	47.880	48.170	-0.
4	Resistance to Soldering Heat				1	Temp)	Mean	8.77059	8.79257	0.2514	48.4883	48.6203	0.2727	8.79456	8.81277	0.2132	48.5177	48.6460	0.2
4													0.070	0.1800	0.10507	0.000/	0.044		
4							Std Dev		0.47290		0.2417	0.2610	0.3784	0.47363	0.46585	0.3934	0.2114	0.2212	
4								0.47176	0.47290	0.3427 Pa	0.2417 ss	0.2610				Pa	ISS	0.2212	0.3
4				L=±20% of initial,				0.47176		0.3427 Pa	0.2417 ss				0.46585 ductance (ul 25KV	Pa	ISS		0.: (mΩ)
		AEC-Q200-002	Determine the Classification of the part.	L=±20% of initial, DCR =±20% of	15	25 ± 5°C		0.47176	0.47290 ductance (u	0.3427 Pa	0.2417 ss DC F	0.2610 Resistance	(mΩ)	Inc	ductance (ul	Pa H)	DC F	0.2212 tesistance	0.3
4	Soldering Heat	AEC-Q200-002	Determine the Classification of the part.		15		Std Dev	0.47176 Ind Initial	0.47290 ductance (u 25KV	0.3427 Ρε IH) %Δ	0.2417 ss DC F Initial	0.2610 Resistance 25KV	(mΩ) %Δ	Inc	ductance (ul 25KV	Ра Н) %∆	DC F	0.2212 tesistance 25KV	0. (mΩ

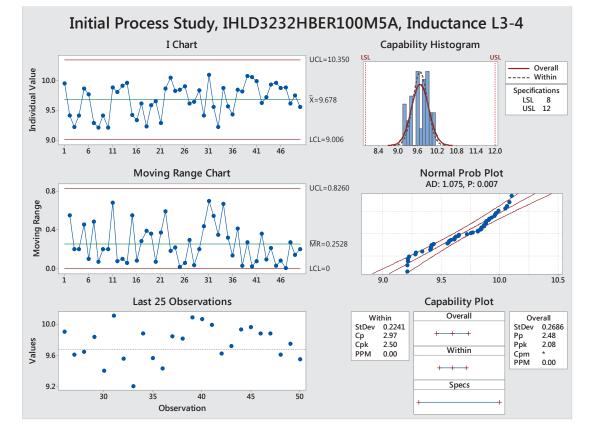
CAPACITORS • DIODES • INDUCTORS • MOSFETS • OPTOELECTRONICS • RESISTORS


16.3	Solderability	J-STD-002 Method S1	Dry heat = 16 hrs @ 155°C Solder = SnAgCu (98/3.5/0.5)% T = 230°C	95% coverage of each individual terminal are coated with new solder	15	N/A	N/A		Pass												
18	Board Flex	AEC-Q200-005	2mm minimum flex for 60 (+5) sec	L=±20% of initial, DCR =±20% of initial	30	25 ± 5°C (Ambient Temp)	Maximum Minimum Mean Std Dev	Initial 10.3199 8.4264 9.26131 0.48800	luctance (u Final 10.3651 8.4500 9.29504 0.49289	H) %∆ 0.530 0.223 0.3626 0.0871	Pass Initial 49.340 47.800 48.4643 0.4265	DC Resista Flexed 49.960 48.480 49.1327 0.4233	ance (mΩ) Final 49.230 47.780 48.4010 0.4039	%∆ 0.145 -0.750 -0.1302 0.1643	Initial 10.2303 8.5427	ductance (u Final 10.2916 8.5846 9.41066 0.49044	H) %∆ 0.599 0.072 0.4062 0.0932	Pass Initial 49.210 47.970 48.7193 0.3827	DC Resist Flexed 49.860 48.530 49.2963 0.3948	tance (mΩ) Final 49.190 47.920 48.6610 0.3975	%Δ 0.143 -0.495 -0.1199 0.1359
19	Terminal Strength	AEC-Q200-006	Force of 1.8kg (17.7 N) for 60 seconds	L=±20% of initial, DCR =±20% of initial	30		Maximum Minimum Mean Std Dev	Initial 10.4417 8.6712 9.53386 0.41724	luctance (u Final 10.4588 8.6951 9.55378 0.42079	Pa H) 0.629 -0.187 0.2080 0.2113		Resistance (Final 49.280 48.130 48.7433 0.3081	%Δ 0.409 -0.392 0.1458	Initial 10.3408 8.3790 8.97877 0.36658	ductance (u Final 10.3568 8.3757 8.98693 0.36845	Pa H) 0.413 -0.039 0.0904 0.1247		Resistance Final 49.180 48.190 48.6910 0.2959	(mΩ) %Δ 0.476 -0.350 0.1761 0.2282		

CAPACITORS • DIODES • INDUCTORS • MOSFETS • OPTOELECTRONICS • RESISTORS

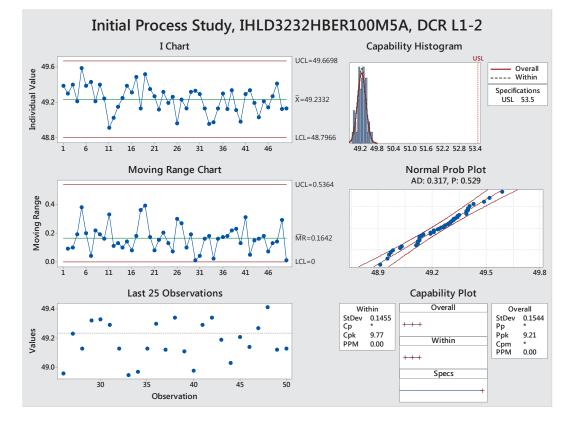
The following PPAP documentation is assembled according to AIAG, 4th Edition PPAP Manual and applicable customer requirements

Initial Process Study IHLD3232HBER100M5A, Inductance L1-2


Inductance (uH)								
1	9.725	26	9.435					
2	9.258	27	9.506					
3	9.165	28	9.774					
4	9.282	29	9.264					
5	9.291	30	9.647					
6	9.908	31	9.512					
7	9.752	32	9.947					
8	9.859	33	9.516					
9	9.855	34	9.516					
10	9.723	35	9.944					
11	9.886	36	9.976					
12	9.255	37	9.415					
13	9.613	38	9.975					
14	9.555	39	9.527					
15	9.451	40	9.679					
16	9.982	41	9.544					
17	9.767	42	9.712					
18	9.538	43	9.921					
19	9.519	44	9.615					
20	9.923	45	9.685					
21	9.891	46	9.326					
22	9.901	47	9.255					
23	9.949	48	9.576					
24	9.551	49	9.422					
25	9.552	50	9.535					

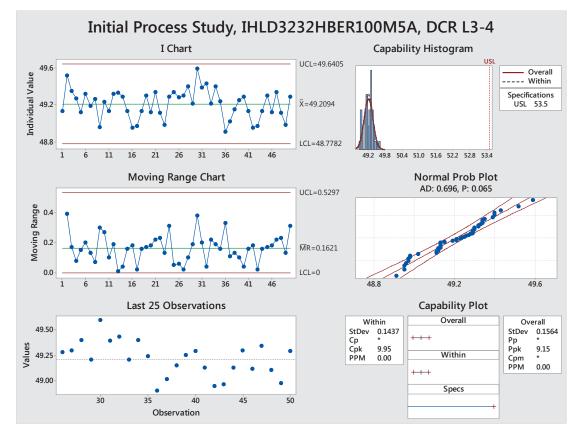
The following PPAP documentation is assembled according to AIAG, 4th Edition PPAP Manual and applicable customer requirements

Initial Process Study IHLD3232HBER100M5A, Inductance L3-4


Inductance (uH)									
1	9.957	26	9.904						
2	9.41	27	9.611						
3	9.212	28	9.644						
4	9.413	29	9.841						
5	9.865	30	9.406						
6	9.767	31	10.105						
7	9.282	32	9.561						
8	9.21	33	9.212						
9	9.409	34	9.882						
10	9.209	35	9.566						
11	9.888	36	9.433						
12	9.814	37	9.844						
13	9.913	38	9.815						
14	9.968	39	10.083						
15	9.417	40	10.062						
16	9.335	41	9.989						
17	9.615	42	9.627						
18	9.225	43	9.721						
19	9.584	44	9.933						
20	9.652	45	9.961						
21	9.28	46	9.878						
22	9.869	47	9.884						
23	10.05	48	9.614						
24	9.831	49	9.752						
25	9.847	50	9.552						

The following PPAP documentation is assembled according to AIAG, 4th Edition PPAP Manual and applicable customer requirements

Initial Process Study IHLD3232HBER100M5A, DC Resistance L1-2


DCR (mOhm)								
1	49.39	26	48.96					
2	49.3	27	49.23					
3	49.4	28	49.13					
4	49.21	29	49.32					
5	49.59	30	49.33					
6	49.39	31	49.29					
7	49.43	32	49.13					
8	49.21	33	48.95					
9	49.4	34	48.97					
10	49.24	35	49.13					
11	48.91	36	49.3					
12	49.02	37	49.12					
13	49.15	38	49.34					
14	49.25	39	49.11					
15	49.39	40	48.98					
16	49.31	41	49.29					
17	49.49	42	49.34					
18	49.13	43	49.19					
19	49.52	44	49.03					
20	49.35	45	49.21					
21	49.27	46	49.14					
22	49.118	47	49.27					
23	49.32	48	49.41					
24	49.19	49	49.12					
25	49.26	50	49.13					

The following PPAP documentation is assembled according to AIAG, 4th Edition PPAP Manual and applicable customer requirements

Initial Process Study IHLD3232HBER100M5A, DC Resistance L3-4

	DCR (mOhm)								
1	49.13	26	49.28						
2	49.52	27	49.3						
3	49.35	28	49.4						
4	49.27	29	49.21						
5	49.118	30	49.59						
6	49.32	31	49.39						
7	49.19	32	49.43						
8	49.26	33	49.21						
9	48.96	34	49.4						
10	49.23	35	49.24						
11	49.13	36	48.91						
12	49.32	37	49.02						
13	49.33	38	49.15						
14	49.29	39	49.25						
15	49.13	40	49.29						
16	48.95	41	49.13						
17	48.97	42	48.95						
18	49.13	43	48.97						
19	49.3	44	49.13						
20	49.12	45	49.3						
21	49.34	46	49.12						
22	49.11	47	49.34						
23	48.98	48	49.11						
24	49.29	49	48.98						
25	49.34	50	49.29						

Production Part Approval Process The following PPAP documentation is assembled according to AIAG, 4th Edition PPAP Manual and applicable customer requirements

Use the control buttons below to navigate through the PPAP sections.

Section 12: Qualified Laboratories

Use the control buttons below to navigate through the PPAP sections.

Section 13: Appearance Approval Report

Inductors, like many other electronic components are specified for their electrical properties. There are no specific requirements stated for the physical appearance of inductors, e.g. color of inductors. Therefore, the Appearance Approval Report does not apply in this case.

Use the control buttons below to navigate through the PPAP sections.

Section 14: Sample Product

Sample product from the Vishay Manufacturing Facility is available upon request

Use the control buttons below to navigate through the PPAP sections.

Section 15: Master Sample

Master Sample(s) will be retained at the Vishay Manufacturing Facility with a copy of the PPAP

Use the control buttons below to navigate through the PPAP sections.

Section 16: Checking Aids

Checking Aids are not required for this electronic component

Use the control buttons below to navigate through the PPAP sections.

Section 17: Records of Compliance

Use the control buttons below to navigate through the PPAP sections.

Section 19: Bulk Material Requirements

Bulk Material Requirements do not apply to this Electronic Component.

VISHAY DALE

www.vishay.com

Magnetics

Application Note

IHLP Standards of Manufacture

IHLP INTRODUCTION SURFACE IRREGULARITIES CRITERIA FOR REJECTION SUMMARY

INTRODUCTION

Scope

This document was written for the purpose of helping customers better understand the product they are purchasing. It will give the customer an idea as to the type of cosmetic irregularities that may occur from time to time during the manufacture of the component itself or during customer use of the component.

This document also discusses the criteria that have been developed for rejection of irregularities that are determined to be excessive.

While it would be desirable to have cosmetically perfect IHLP inductors, the powdered iron manufacturing technique has cosmetic limitations.

Certified test labs have performed extensive environmental testing on IHLP's with and without cosmetic imperfections according to AEC-Q200 standards for such tests as thermal shock, mechanical shock, vibration, humidity and others. This testing has shown that the cosmetic imperfections listed in this document do not affect the performance or reliability of the IHLP inductor. Test results are available upon request.

Product

The IHLP inductor is unique from most inductors. The inductor body is a soft magnetic composite (SMC), not a ferrite. It is made from an iron powder mixture and cemented together using a resin binder. This powder mixture, when pressed around the inductor coil, greatly enhances the electrical properties of the inductor and gives protection from environmental forces. After pressing, the component is cured in an oven to increase the bonding strength of the resin binders with the iron powder, yielding excellent electrical and physical properties.

The IHLP inductor provides the best combination of:

- Inductance
- Low Core Loss
- Saturation
- Temperature Stability
- Smallest Footprint
- Lowest Profile

Surface irregularities

The following pages include descriptions of the most common irregularities seen on IHLP inductors. Common causes are described along with variations in their magnitude. Customers may at some time see one or all of these irregularities.

Those that are determined to adversely affect the customer's use of the component are rejected, but minor (acceptable) irregularities will occasionally be present. With the use of this guide, a customer will better understand the effect of each irregularity.

Cracks

Chips

Oxidation

Document Number: 34352

1 For technical questions, contact: <u>magnetics@vishav.com</u>

IHLP Standards of Manufacture

CRACKS

Cracks within the inductor body are unavoidable during the manufacturing process. Small cracks are caused by die wall friction when the parts are ejected during the pressing process and by expansion of the coil during the process of curing the resin binder in the powdered iron body. Unlike ferrite material, cracks on the IHLP body do not affect the electrical performance of the component.

Reliability testing has shown that even cracks in excess of 0.005" will not cause the component to fail electrically or physically in field application. Acceptance widths are adopted based on the ability to detect cracks both at the component and circuit level.

Minor crack, acceptable

Minor cracks are those that are visible without magnification but are not apparent without close inspection.

Terminal area crack, acceptable

Cracks coming from the top corner of the terminal are a normal occurrence and are caused by terminal expansion during curing operations.

Moderate crack, rejectable

Moderate cracks are those that are obvious upon examination and continue across most of the component.

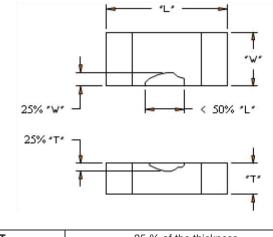
Negligible crack, acceptable

Negligible cracks are those that are nearly invisible without magnification.

Major crack, rejectable

Major cracks are those that are obvious to a customer and would possibly result in large chip-outs that would expose the coil and lead frame.

Revision: 30-Apr-13


2 For technical questions, contact: magnetics@vishay.com Document Number: 34352

IHLP Standards of Manufacture

CHIPS

Chipping of the inductor body can occur during normal processing and testing of the inductor. The acceptance criteria for chipping vary with the size of the component, but current acceptance standards are based on IPCA-610. The effect of chipping is negligible as long as the inductor coil is not showing. See IPC standard for class 1 and 2 components below.

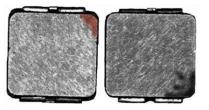
т	25 % of the thickness	
w	25 % of the width	
L	50 % of the length	

Chips typically occur on the edges and corners of the inductor body. They are slightly darker in color and rougher in appearance than the surrounding material.

Minor chipping, acceptable

Minor chips in the inductor body are those that are typically shallow imperfections that occur on the corners and edge of components. No coil wire or lead frame is showing and the chip does not affect the performance or reliability of the component.

Major chipping, rejectable


Major chips in the inductor body are those that are very obvious to the customer and may expose the wire coil or lead frame.

OXIDATION

The IHLP inductor is predominately iron and oxidation may occur in a small percentage of the inductors. Resin binders give moderate protection, but some slight oxidation may occur. All components should be stored away from heat, humidity and ionized atmospheres as much as possible before mounting.

Basic steps should be taken in order to limit surface oxidation, including keeping the IHLP inductors sealed in their packaging until PCB mounting.

In the case that oxidation does occur, the effects are contained to the surface of the component and do not penetrate into the core material. No electrical effects have ever been documented due to oxidation of the IHLP product. Oxidation should never be considered a reliability risk.

Top view

Side view

Revision: 30-Apr-13

3 For technical questions, contact: magnetics@vishay.com Document Number: 34352

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT

DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMEN ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

IHLP Standards of Manufacture

OTHER

A very small number of other irregularities have been reported. These occur at an exceedingly low rate and typically do not affect the components electrically. These include:

<u>Foreign material</u> may be seen pressed into the upper terminals. This material is of the same material as the inductor body and should not be a reason for rejection unless solderability is affected.

Foreign material: Acceptable

<u>Scratches</u> may be seen on the surface of the inductor body. Scratches are an acceptable surface irregularity.

Scratch: Acceptable

SUMMARY

The IHLP inductor is comprised of an iron powder body compressed around a coil. Due to the fact that this iron powder body is not solid like ferrite material, irregularities such as cracks and chips do not affect the electrical properties, or the reliability of the component. Criteria have been determined for the acceptability of the components that allow for a robust manufacturing process as well as an acceptable degree of cosmetic irregularity.

Reliability testing has been done on the effects of cracking of the iron powder body and on the oxidation of the iron particles that are present on the surface. Testing has shown no reliability issues from either of these cosmetic differences.

ш

Revision: 30-Apr-13

Instructions

ASSEMBLY INSTRUCTIONS

General

This document provides instructions on mounting for the different types of packages, specifically on the different methods of soldering.

If the device is to be mounted near heat-generating components, consideration must be given to the resultant increase in ambient temperature.

Soldering Instructions

Protection against overheating is essential when a device is being soldered. Therefore, the PCB traces should be left as long as possible. The maximum permissible soldering temperature is governed by the maximum permissible heat that may be applied to the package.

The maximum soldering iron (or solder bath) temperatures are given in the individual Datasheets. During soldering, no forces must be transmitted from the pins to the case (e.g., by spreading the pins).

Soldering Methods

There are several methods for soldering devices onto the substrate. The following list is not complete.

a. Soldering in the Vapor Phase

Soldering in saturated vapor is also known as condensation soldering. This soldering process is used as a batch system (dual vapor system) or as a continuous single vapor system. Both systems may also include a pre-heating of the assemblies to prevent high temperature shock and other undesired effects.

b. Infrared Soldering

By using infrared (IR) reflow soldering, the heating is contact-free and the energy for heating the assembly is derived from direct infrared radiation and from convection.

The heating rate in an IR furnace depends on the absorption coefficients of the material surfaces and on the ratio of component's mass to an As-irradiated surface.

The temperature of parts in an IR furnace, with a mixture of radiation and convection, cannot be determined in advance. Temperature measurement may be performed by measuring the temperature of a certain component while it is being transported through the furnace.

The temperatures of small components, soldered together with larger ones, may rise up to 280 °C.

Influencing parameters on the internal temperature of the component are as follows:

- Time and power
- · Mass of the component
- · Size of the component
- · Size of the printed circuit board
- · Absorption coefficient of the surfaces
- Packing density
- · Wavelength spectrum of the radiation source
- Ratio of radiated and convected energy

As a general rule of thumb, maximum temperature should be reached within 360 s and time above solder liquids temperature should be reached in less than 180 s.

Temperature/time profiles of the entire process and the influencing parameters are given. The IR reflow profile is shown in Figure 1.

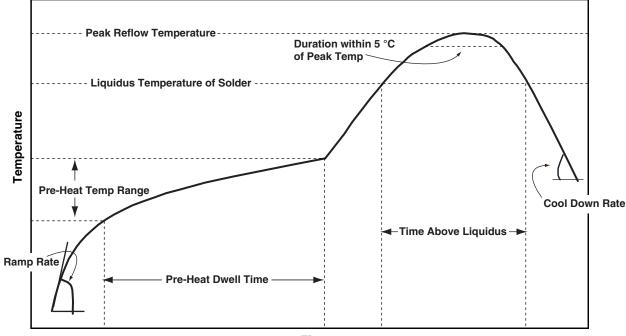
c. Wave Soldering

In wave soldering one or more continuously replenished waves of molten solder are generated, while the substrates to be soldered are moved in one direction across the crest of the wave. Maximum soldering temperature should not exceed 260 °C for 20 s.

d. Iron Soldering

This process cannot be carried out in a controlled situation. It should therefore not be used in applications where reliability is important. There is no SMD classification for this process.

CLEANING INSTRUCTIONS


A no clean solder system is recommended for IHLP's.

If cleaning must be performed, an Isopropyl alcohol is recommended. If de-ionized Water Wash is used insure it is followed by a thorough warm air dry cycle to avoid oxidation.

Some cleaning solutions, especially those containing non-linear alcohol will attack the IHLP and should be avoided. It is recommended that any chemical cleaning solution be thoroughly rinsed with clean water. The IHLP should be tested for compatibility with any cleaning solution before production assembly.

TYPICAL REFLOW SOLDERING PROFILE

Time

Fig. 1 - Infrared reflow soldering (SMD package)

LEAD (Pb)-FREE SOLDER (SnAgCu) REFLOW PROFILE ATTRIBUTES		
PROFILE ATTRIBUTE	PROFILE ATTRIBUTE	
Peak Reflow Temperature	255 (± 5) °C	
Time within 5 °C of Peak Temperature	30 s max.	
Liquidus Temperature of Solder	~ 217 °C	
Cool Down Rate	6 °C/s max.	
Time above Liquidus	60 s to 150 s	
Pre-heat Temperature Range	150 °C to 200 °C	
Pre-heat Dwell Time	60 s to 120 s	
Maximum Ramp Rate	3 °C/s max.	