

SQJQ184ER Top-Side Cooled Automotive N-Channel 80 V MOSFET **Reduce PCB Temperature**, **Increase Power Density in Automotive Applications**

ADVANTAGE

The SQJQ184ER provides an optimized solution for automotive designs that use a heatsink, helping reduce the temperature of the PCB and enabling energy efficient and reliable automotive electronics.

KEY PRODUCT FEATURES

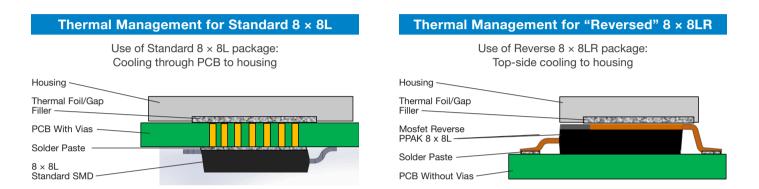
- ✓ AEC-Q101 qualified
- ✓ Top-cooled feature optimized for heatsink mounting
- Very low on-resistance maximum R_{DS(ON)} of 1.4 mΩ
- ✓ Wire-free construction
- Improved efficiency and thermal transfer flow
- ✓ Gullwing leads optimized to achieve maximum relief for mechanical and thermal stresses

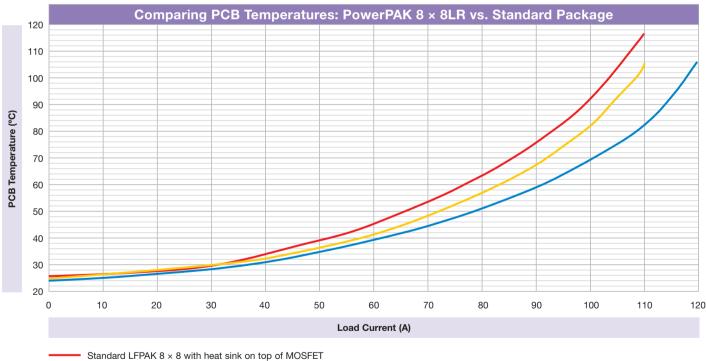
RESOURCES

MARKETS AND APPLICATIONS

AUTOMOTIVE

- 48 V systems
 - Battery management
 - Power steering
- Braking systems
- Motor drive control
- DC/DC converters
- On-board chargers
- Back-to-back switches


KEY PRODUCT BENEFITS


PCB temperature	
Adjacent devices temperature	
Overall costs	
PCB copper content	
On-resistance	
Power losses	
Mechanical and thermal stress	
Thermal efficiency	
Energy efficiency	
Current output	
Power density	

ADDITIONAL BENEFITS

- · Heat is directly dissipated to the heatsink, with no vias needed in the PCB area of the MOSFET
- Enables PCBs with less copper content and improves costs
- Improved ΔT allows for higher power output and power density
- PCB is no longer the dominant thermal path, and the remaining components can be rescaled down

Standard LFPAK 8 × 8 with heat sink mounted on PCB

PowerPAK 8 × 8LR with heat sink

The PCB featuring the PowerPAK 8 × 8LR offers lower temperature than a board populated by a standard 8 mm by 8 mm package with the exposed drain pad at the bottom side. All three test legs have airflow to promote thermal efficiency but with 110 A injected into the devices, the PCB with the PowerPAK 8 × 8LR has a 19 % cooler temperature measurement.