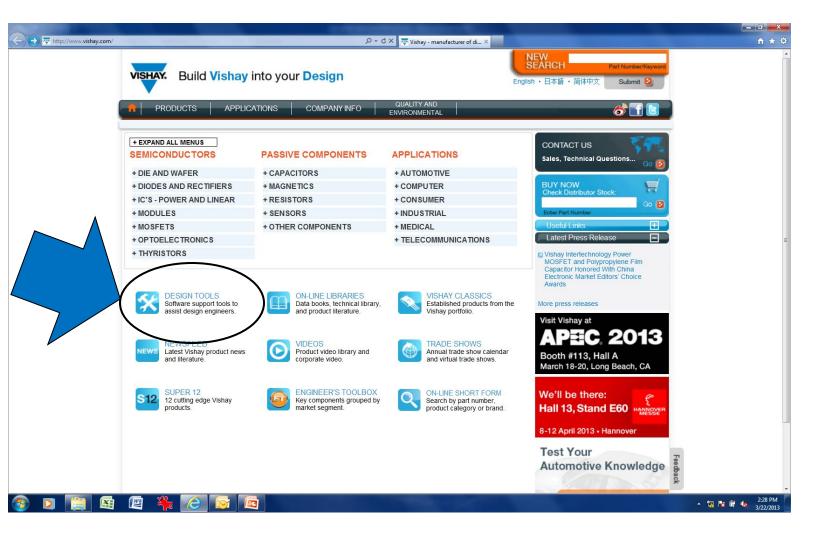


One of the World's Largest Manufacturers of Discrete Semiconductors and Passive Components

IHLP® Inductor Loss Calculator Tool User Guide

Build Vishay into your Design

How do I get to it?



If You're Already on the Vishay Inductors Page ...

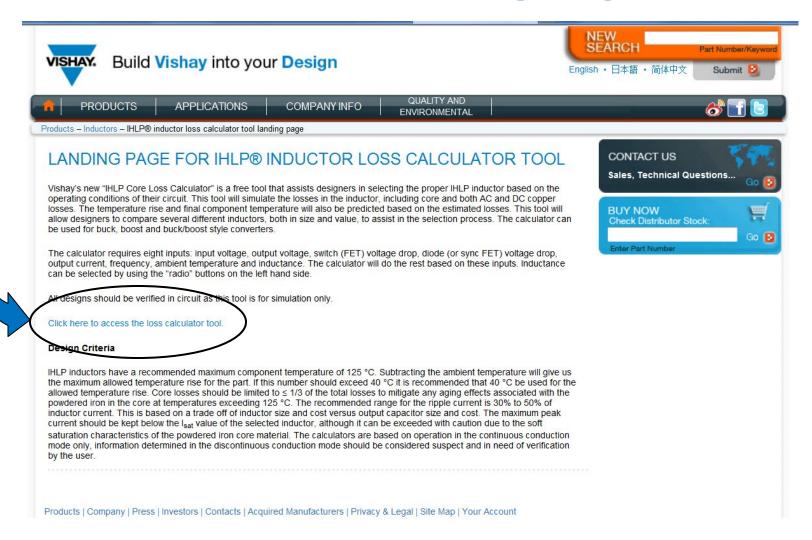
If Not ...

How do I get to it? Start with Vishay's Webpage - WWW.Vishay.com

Scroll down to:

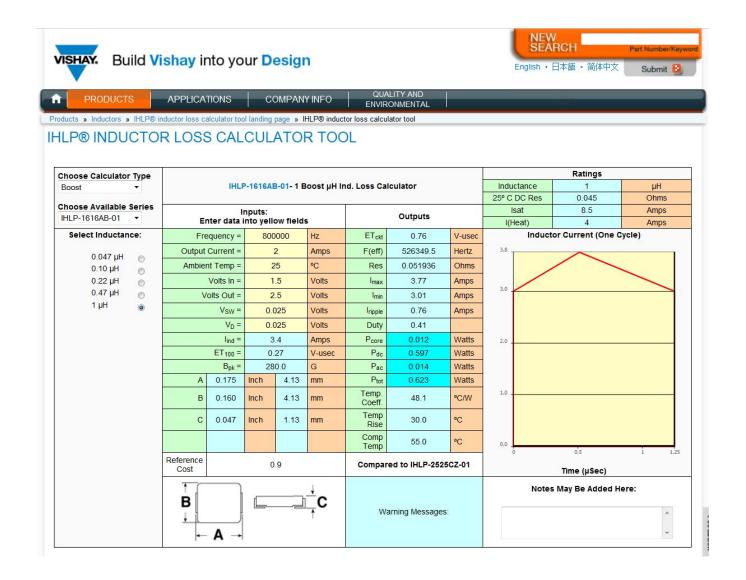
	TOWOTOU BY Epsilon	
21990.450.00	SPICE models	
Rectifiers	SPICE models	
TVS and ESD protection devices	SPICE models	

PASSIVE COMPONENTS

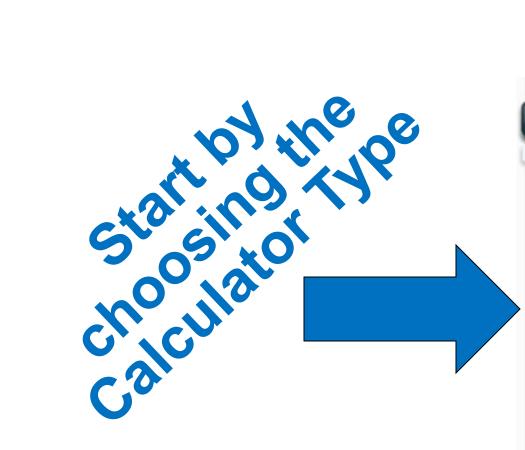

P	roduct Group	Description				
Aluminum capacitors		Capacitor selection tool				
Inductors	Click Here	Loss calculator				
NTC thermistors		Curve computation program				
		Piezo resistive sensor bridge analog tempo compensation calculator				
		My VISHAY NTC curve				
		3D Models				
		Resistor/Thermistor Networks Computation				
Resistors		Ohm's Law Calculator				
		Pulse Energy Calculator				
Tantalum capacitors		Reliability calculator				

Demo boards and other information

Product Group	Description



You will find the landing page



You have arrived

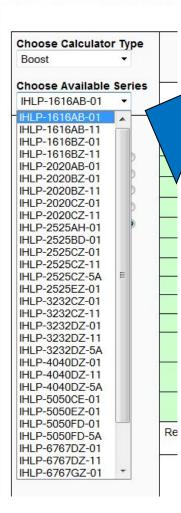
IHLP® INDUCTOR LOS

Choose Calculator	Ту	pe	
Buck	•		
Boost			
Buck		ies	
Buck-Boost			
Select Inductan	ce:		F
0.047 µH	6		Outp
0.10 µH	0		Ambi
0.22 µH	0		
0.47 µH	0		
1 µH	(0	_	

Enter your circuit requirements in the YELLOW boxes/fields

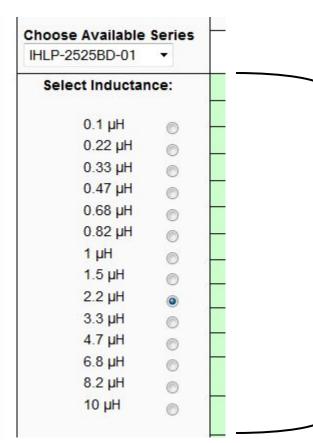
(Use the Tab key to change fields)

s	Inputs: Enter data into yellow fields								
100	Frequency =	500000	Hz						
50	l _{ind} =	5	Amps						
	Ambient Temp =	65	°C						
160	Volts In =	12	Volts						
80	Volts Out =	3.3	Volts						
	V _{SW} =	0.1	Volts						
(40	V _D =	0.5	Volts						
92	ET ₁₀₀ =	1.06	V-used						


Note: $I_{ind} = I_{out}$ in a Buck converter.

 V_{sw} = The voltage drop in the switch (MOSFET).

 V_D = The voltage drop in the output diode.

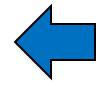


Products » Inductors » IHLP® inductions IHLP® INDUCTOR

Select which IHLP series you wish to start with ...

Use the <u>RADIO</u> buttons to select an inductance value ...

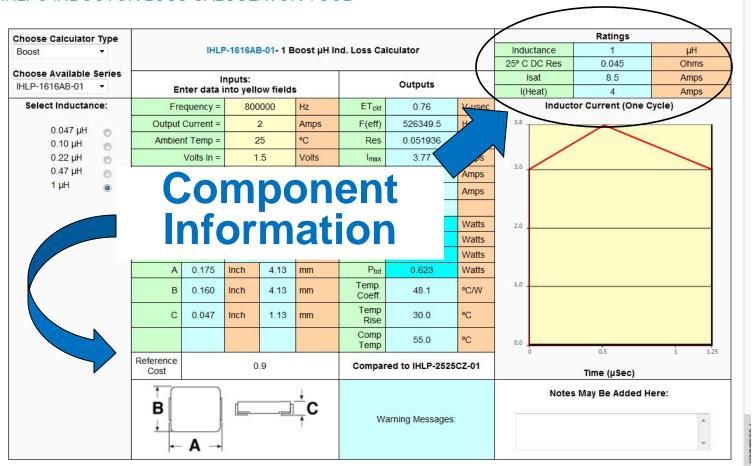
Calculator Outputs


_		
	Outputs	
ET _{ckt}	5.27	V-usec
F(eff)	374413.5	Hertz
Res	0.036632	Ohms
I _{max}	6.20	Amps
I _{min}	3.80	Amps
I _{ripple}	2.40	Amps
Duty	0.31	
P _{core}	0.177	Watts
Pdc	0.916	Watts
Pac	0.159	Watts
Ptot	1.252	Watts
Temp. Coeff.	29.3	°C/W
Temp Rise	36.7	°C
Comp Temp	101.7	°C

Circuit parameters

Power dissipation

Component temperature



PRODUCTS APPLICATIONS COMPANY INFO QUALITY AND ENVIRONMENTAL

Products » Inductors » IHLP® inductor loss calculator tool landing page » IHLP® inductor loss calculator tool

APPLICATIONS

COMPANY INFO

QUALITY AND ENVIRONMENTAL

Products » Inductors » IHLP® inductor loss calculator tool landing page » IHLP® inductor loss calculator tool

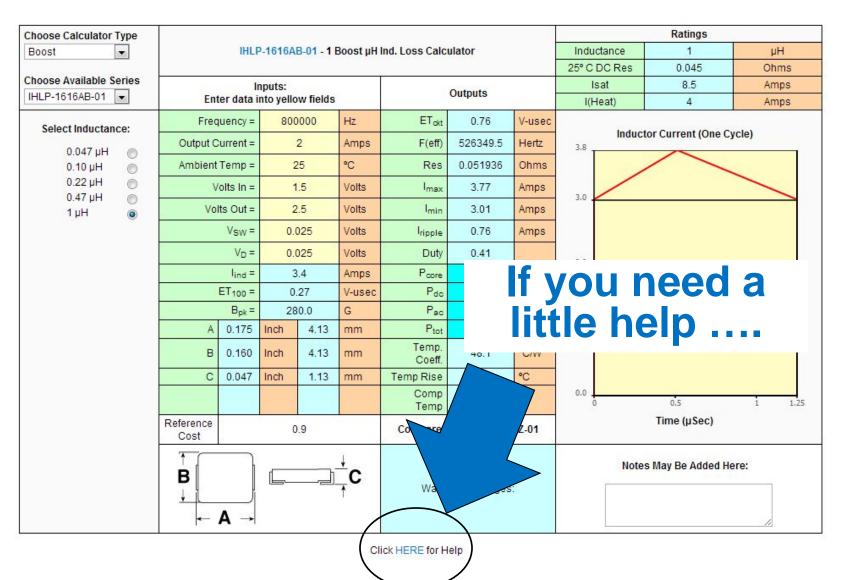
Choose Calculator Type										Ratings	·
Boost ▼		IHLI	P-1616A	B-01- 1 E	Boost µH Ir	Inductance	1	μH			
					718573			,	25° C DC Res	0.045	Ohms
Choose Available Series IHLP-1616AB-01 ▼		Inputs:					Outputs		Isat	8.5	Amps
	E	Enter data into yellow fields			S				I(Heat)	4	Amps
Select Inductance:	Fre	Frequency = 800		00000 Hz		ET _{ckt}	0.76	V-usec	Inducto	Inductor Current (One Cycle)	
0.047 µH	Output	Current =		2	Amps	F(eff)	526349.5	Hertz	3.8	^	
0.10 µH	Ambie	nt Temp =	2	25	°C	Res	0.051936	Ohms		/ \	
0.22 µH		Volts In =	1	.5	Volts	I _{max}	3.77	Amps			
0.47 µH	V	Volts Out = 2.5 V _{SW} = 0.025		2.5		I _{min}	3.01	3.01 Amps	3.0		
1 μH 🌘				025	Volts	Iripple	0.76	Amps			
		V _D =	0.	025	Volts	Duty	0.41				
	2	l _{ind} =	3.4		Amps	P _{core}	0.012	Watts	2,0		
		ET ₁₀₀ =	0.27		V-usec	P _{dc}	0.597	Watts			
		B _{pk} =	280.0		G	Pac	0.014	Watts	tts		
	А	0.175	Inch	4.13	mm	P _{tot}	0.623	Watts			
	В	0.160	Inch	4.13	mm	Temp. Coeff.	48.1	°C/W	1.0		
	С	0.047	Inch	1.13	mm	Temp Rise	30.0	°C			
						Comp Temp	55.0	°C	0.0	0.5	1 1,25
Mes	sa	ge	S	9	\sim	Compar	ed to IHLP-252	5CZ-01	· ·	Time (µSec)	1 1123
	1.1		,		7				Notes	May Be Added H	ere:
	В					Wa	rning Messages	s:)			*
	•	_			05						
	-	Α →									+

Messages – What do they mean?

There are four possible messages that can be displayed

They are

Messages – What do they mean?


- 1. Warning Component temperature Exceeds 125°C
- 2. Inductor Current Exceeds Saturation Current
- 3. Discontinuous Mode Model Invalid
- 4. Caution Core Losses Greater Than 1/3 of total Losses

The first two are self explanatory (it would be 155°C for -5X parts)

The third indicates that the circuit would be in discontinuous mode – the calculator is based on continuous conduction mode. The results will not be as accurate.

The fourth is just informational, a good rule of thumb is 1/3 core and 2/3 copper losses.

H L P

F L

IHLP® LOSS CALCULATOR HELP FILE

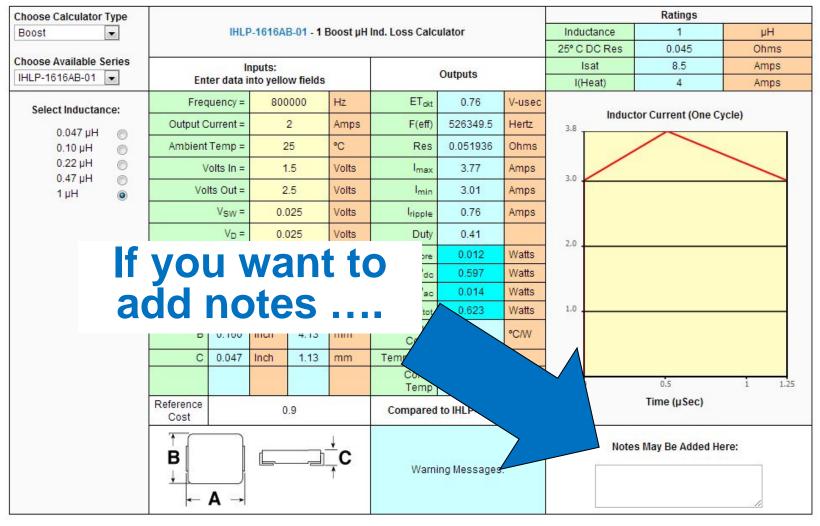
The purpose of this calculator is to estimate the losses in the Vishay IHLP series inductors used in continuous mode power converters. Both copper and core losses are estimated. The program also may be used to estimate temperature rise, but you may experience results different from what this program predicts.

Inputs: Eight inputs must be supplied by the user of the calculator. Data must be entered into the yellow cells only.

- Enter the inductance by clicking on one of the radio buttons on the left side.
- 2. Enter the frequency of the circuit.
- Enter the DC output current of the converter.
- Enter the ambient temperature. The program uses this to calculate the final resistance of the inductor and the final component temperature.
- Enter the input voltage of the converter.
- 6. Enter the output voltage of the converter.
- 7. Enter the switch drop voltage VSW.
- Enter the diode or sync FET voltage drop V_D.

Once entered, your inputs will remain as is until a new input value is entered. To change inductance used, click a different inductance button. Clicking the button sets up the calculator with new internal data for the part specified and immediately updates the calculator, including the graph.

Outputs: The outputs of the calculator are displayed in the blue cells, they are summarized below.


- ET_{ckt}: The volt-microsecond product of the converter circuit.
- F(eff): This is the calculated effective frequency of the circuit used for the determination of core loss. The program takes into
 account the shape and amplitude of the current ripple when it calculates core loss.
- Res: Resistance of the inductor at the temperature specified in the inputs.
- . Imax: The peak current of the inductor at the top of the ripple.
- . Imin: The instantaneous current at the bottom of the ripple.
- Iripple: The change of inductor current from the bottom of ripple to top of ripple = I_{max} I_{min}.
- . Duty: The percentage of time that the switch is on.
- Pcore: Core loss in watts.
- P_{dc}: Conductor loss due to dc resistance in the inductor in watts.
- Pac: Conductor loss due to ac effects in watts.
- Ptot: Total losses in the inductor = Pcore + Pdc + Pac
- Temp. Coeff: The rise in temperature in °C per watt of dissipation. This is based on lab tests performed on sample inductors
 using the change of resistance method. Your thermal environment and that used in our lab may be different.
- Temp Rise: This is the increase in inductor temperature above ambient.
- Comp Temp: The ambient temperature plus the temperature rise. This is the estimated temperature of the inductor.
- I_{ind}: This is the DC current that the inductor sees in the boost and buck-boost converter topology, in buck converters the
 inductor current is equal to the output current.
- ET₁₀₀: Volt-microsecond product of the inductor at 100 gauss.
- B_{pk}: Peak flux density of the circuit based on operating conditions specified.

