

DIODE SUBMOUNT CAPABILITIES Using Thin Film Substrates

LED Submounts

INTRODUCTION

Vishay Electro-Films, with its complete in-house capability, offers a wide variety of solutions for matching the best substrate materials and metal schemes to achieve optimum thermal and mechanical performance.

Vishay Electro-Films, an RoHS-compliant facility and ISO 9001/2000-registered company, provides thermal management submount solutions for all optoelectronics applications.

RESOURCES

CAPABILITIES

- For technical questions contact efi@vishay.com
- General Product Tech Notes:
 - HDI Design Guidelines: <u>http://www.vishay.com/doc?49387</u>
 - Integrated Microelectronic Interconnect Circuitry: <u>http://www.vishay.com/doc?61082</u>
 - Layout Guidelines: http://www.vishay.com/doc?61081
 - Standard Metal Thickness: <u>http://www.vishay.com/doc?49387</u>

1/6

- Application and Design of Plated and Filled Via Circuits: <u>http://www.vishay.com/doc?61084</u>
- Sales Contacts: <u>http://www.vishay.com/doc?99914</u>

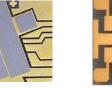
VMN-PL0400-1204

One of the World's Largest Manufacturers of

Discrete Semiconductors and Passive Components

Using Thin Film Substrates

Typical Applications Using Vishay Electro-Films Substrate Submounts


25 Gbit/s to 40 Gbit/s TOSA and ROSA transceiver / receiver optical sub submount

Semiconductor laser diode submount

Single-emitter semiconductor laser

Tunable laser submount

CATV submount

Applications

- Laser diode submounts
- Fiber optic pump lasers
- Optical transmitters
- Optical receivers
- Optical transceivers
- Optical TOSA/ROSA
 packages

Machined Shapes

Vishay EFI's in-house CO_2 laser machining of ceramics provides the ability to offer custom-shaped substrates, cut outs, and holes for special applications. CO_2 machining can be applied to AI_2O_3 , AIN and BeO substrates.

Cut out Tosa Rosa

10 G Submount

High Power Laser Bar

Custom Round with Filled Vias

Custom Submounts

CAPABILITIES

Using Thin Film Substrates

High-Power Conductor Lines

Special process capabilities allow Vishay EFI to provide power lines with up to 0.006 in thick copper. A copper conductor to 0.002 in (0.05 mm) thickness can be integrated on one substrate in relatively close proximity to the fine-line patterns without degradation of the patterning capability. The copper lines are isolated with nickel barrier layers to prevent copper oxidation and intermetalic diffusion during high-temperature processing and operation.

Thick copper

Thick copper / Nickel / Gold

See datasheet 61053 at http://www.vishay.com/doc?61053

General Product Tech Notes:

HDI Design Guidelines: <u>http://www.vishay.com/doc?49387</u> Integrated Microelectronic Interconnect Circuitry: <u>http://www.vishay.com/doc?61082</u>

If your design is complete and you would like us to use your files, or if you would like us to help finalize your application design, please contact: Vishay Electro-Films, Inc., 111 Gilbane Street, Warwick, RI 02886, USA, Ph: +1-401-738-9150, Fax: +1-401-738-4389, Email: <u>EFI@Vishay.com</u>

Design Guidelines – Materials

Vishay offers a variety of material choices for submounts with a wide range of thicknesses to help designers meet their specific application requirements.

Material	Surface finish µ" CLA (micro inch)	Standard thickness mils (mm)	Available thickness mils (mm)	Dielectric constant ε at 1 MHz	Thermal conductivity (W/m°C) 25 °C/100 °C	Coefficient thermal expansion (ppm)	Tanδ 1 MHz 10 GHz
Quartz	60/40 optical	10, 20 (0.25, 0.5)	10 to 40 (0.25 to 1.0)	3.82	5 / 2	0.55	0.00002 0.0001
Al ₂ O ₃	< 1 polished < 3 as-fired	10, 15, 25 (0.25, 0.38, 0.63)	5 to 90 (0.12 to 2.3)	9.9	35 / 27	7.4	0.0001 0.0003
AIN	< 2 polished < 24 as-fired	20, 25, 51 (0.5, 0.63, 1.3)	10 to 90 0.25 to 2.3)	8.6	170 / 130 200 / 230	4.6	0.001 0.002
BeO	< 4 polished < 15 as-fired	15, 25 (0.38, 0.63)	10 to 60 (0.25 to 1.5)	6.5	300 / 240	9	0.0004
Zirconia	< 4 polished	Special order	10 to 25 (0.25 to 0.63)	20 to 33	2 to 3	10 to 11	~

CAPABILITIES

DIODE SUBMOUNT CAPABILITIES Using Thin Film Substrates

Metalization Guidelines

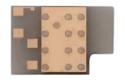
For applications incorporating resistors, or for conductors only, Vishay provides designers with a wide range of metal combinations to meet their needs.

Metal stack resistor	Vishay EFI STD	Wire bondable	Solde	erable	Vishay EFI STD			
			Gold	Solder				
Ta ₂ N/TiW/Au	Yes	Yes	~	~	TiW (500 to 1 kA)			
Ta ₂ N/TiW/Au/Ni/Au	Yes	Yes	Yes	Yes	TiW (500 to 1 kA)			
Ta ₂ N/TiW/Pd/Au	Yes	Yes	Yes	Yes	TiW (500 to 1 kA)			
Ta ₂ N/TiW/Au/Cu/Au		Yes	~	~	TiW (500 to 1 kA)			
Ta ₂ N/TiW/Au/Cu/Ni/Au		Yes	Yes	Yes	TiW (500 to 1 kA)			
NiCr/TiW/Au	Yes	Yes	~	~	TiW (500 to 1 kA)			
NiCr/Au/Ni/Au		Yes	Yes	Yes				
Conductor Only								
TiW/Au	Yes	Yes	~	~	TiW (500 to 1 kA)			
TiW/Au/Ni/Au		Yes	Yes	Yes	TiW (500 to 1 kA)			
TiW/Pd/Au	Yes	Yes	Yes	Yes	TiW (500 to 1 kA)			
Ti/Pd/Au		Yes	Yes	Yes	Ti (500 to 1 kA)			
Conductor Only - High Power								
TiW/Cu/Ni/Au	Yes	Yes	Yes	Yes	TiW (500 to 1 kA)			
NiCr/Cu/Ni/Au		Yes	Yes	Yes	NiCr (500 to 1 kA)			
AuSn 80/20	Yes		Yes	Yes	4, 6, 8 micron			

Refer to technical note for recommended standard metal thickness http://www.vishay.com/doc?49387

CAPABILITIES

Using Thin Film Substrates


Thermal Management – Solid Filled Vias

Vishay EFI Products Feature Unique Capabilities for Improved Thermal Performance

- Solid-filled vias Gold or copper vias are available in AIN, BeO, AI_2O_3 , and quartz.
- Key benefits:
 - High-reliability, low-resistance paths to ground (less than 10 m Ω)
 - Enhanced thermal conductivity
 - Low thermal paths to rear of the substrate

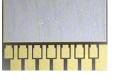
Design Parameters					
Material Thickness	Min Via Diameter (max = 2x min)				
0.010 in (0.245 mm)	0.006 in (0.152 mm)				
0.015 in (0.381 mm)	0.008 in (0.203 mm)				
0.020 in (0.51 mm)	0.010 in (0.254 mm)				
0.025 in (0.635 mm)	0.012 in (0.305 mm)				
0.050 in (1.27 mm)	0.020 in (0.51 mm)				
Min Via Centers	Min Via Center to Die Edge				
2x via diameter Al ₂ O ₃ 3x via diameter AlN	1.5x via diameter				

See technical note 61084, "Application and Design of Plated & Filled Via Circuits" at http://www.vishay.com/doc?61084

Cu filled 8 mil (0.2 mm) diameter vias on a 15 mil thick (0.38 mm) aluminum nitride substrate

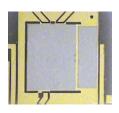
Custom gold filled 10 mil (0.25 mm) diameter vias on a 20 mil (0.51 mm) thick alumina substrate

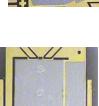
CAPABILITIES



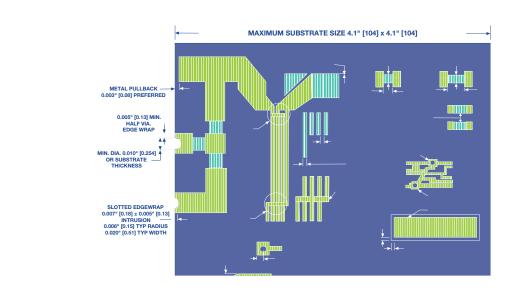
Using Thin Film Substrates

Thermal Management – AuSn


- Gold/tin pre-deposited pads Vishay Electro-Films offers a robust selective-patterned 80/20 gold/tin for solder applications.
- Key benefits:
 - 2 μm to 8 μm thickness available at \pm 1 μm tolerance
 - Eliminates need for soldering preforms AuSn is pre-deposited onto submount
 - Available on simple to complex designs
 - AuSn pad placement accuracy to 0.0005 in. (0.0127 mm)
 - Allows accurate laser alignment to ± 0.005 in. (0.127 mm)
 - Pad tolerance to ± 0.0002 in (0.005 mm)
 - Freeze time: 120 s at 320 °C
 - Excellent reflow stability does not migrate outside borders of defined area



AuSn pad custom designs



AuSn pad with no vias

AuSn pad with vias

Layout Guidelines

CAPABILITIES

6/6

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000