FREE GREEN (5-2008) # **AEC-Q200 Qualified** High Frequency 70 GHz Thin Film Chip Resistor # **LINKS TO ADDITIONAL RESOURCES** # **FEATURES** - · Operating frequency 70 GHz - AEC-Q200 qualified - · Thin film microwave resistors - Ohmic range: 10 Ω to 500 Ω - Design kits available - Material categorization: for definitions of compliance Modelithics[®] library available • Small internal reactance (LC down to 1 x 10-24) please see www.vishay.com/doc?99912 Those miniaturized components are designed in such a way that their internal reactance is very small. When correctly mounted and utilized, they function as almost pure resistors on a very large range of frequency, up to 70 GHz from 10 Ω to 500 Ω . | STANDARD ELECTRICAL SPECIFICATIONS | | | | | | | |------------------------------------|-------|--|---------------------------------------|----------------------------------|------------------|--| | MODEL | SIZE | $\begin{array}{c} \textbf{RESISTANCE} \\ \textbf{RANGE} \\ \Omega \end{array}$ | RATED POWER
Pn ⁽¹⁾
W | LIMITING ELEMENT
VOLTAGE
V | TOLERANCE
± % | TEMPERATURE
COEFFICIENT
± ppm/°C | | CHA02016 | 02016 | 10 to < 50 | 0.030 | 30 | 5 | 100 (50 upon request) | | CHA02016 | 02016 | 50 to ≤ 500 | 0.030 | 30 | 2, 5 | 100 (50 upon request) | | CHA02016 | 02016 | 50 and 100 | 0.030 | 30 | 1, 2, 5 | 100 (50 upon request) | ⁽¹⁾ PCB mounting with +70 °C ambient temperature #### Note • Suggested land pattern: according to IPC-7351 # PERFORMANCE (CHA02016 F/P TERMINATION) | TEST PROCEDURES AND REQUIREMENTS | | | | | | |----------------------------------|------------------------------|---|--|---|--| | AEC-Q200
CLAUSE | TEST | PROCEDURE | GLOBAL
PERFORMANCES | TYPICAL PERFORMANCES (25 Ω TO 250 Ω) | | | 3 | High temperature exposure | MIL-STD-202 method 108
1000 h at T = 125 °C,
unpowered | ± 2 % ± 0.05 Ω | ± 0.2 % ± 0.05 Ω | | | 4 | Temperature cycling | JESD22 method JA-104
1000 cycles (-55 °C to +155 °C) | \pm 1.8 % \pm 0.05 Ω | ± 1.5 % ± 0.05 Ω | | | 7 | Biased humidity | MIL-STD-202 method 103
1000 h 85 °C / 85 % RH
10 % of operating power | ± 2 % ± 0.05 Ω | ± 0.75 % ± 0.05 Ω | | | 8 | Operational life | MIL-STD-202 method 108
condition D steady state
T = 125 °C at rated power
90' on / 30' off / 1000 h | ± 2.5 % ± 0.05 Ω | ± 1 % ± 0.05 Ω | | | 13 | Mechanical shock | MIL-STD-202 method 213 condition C 100 g/6 ms 3.75 m/s 3 shock/direction, 2 directions along 3 axes (18 shocks) | ± 0.05 % ± 0.05 Ω | ± 0.015 % ± 0.05 Ω | | | 14 | Vibration | MIL-STD-202 method 204
5 g for 20 min,
12 cycles each of 3 orientations
Test from 10 Hz to 2000 Hz | ± 0.1 % ± 0.05 Ω | ± 0.05 % ± 0.05 Ω | | | 15 | Resistance to soldering heat | MIL-STD-202 method 210
condition D
Flux used: alpha 611
Solder temp.: 260 °C ± 5 °C
Total immersion during 10 s | ± 2.5 % ± 0.05 Ω | ± 0.5 % ± 0.05 Ω | | | 17 | ESD | AEC-Q200-002 | Classification 1C V_{DC} to 2000 V_{DC} | | | | 18 | Solderability | J-STD-002 - Preconditioning 4 h dry heat aging and 235 °C SnPb 5 s - 215 °C SnPb 5 s - 260 °C SnAgCu 10 s | Good tinning (≥ 95 % covered)
No visible damage | | | | 20 | Flammability | UL 94 | Class V-0
No burning | | | | 21 | Board flex | AEC-Q200-005 | ± 0.1 % ± 0.05 Ω | ± 0.05 % ± 0.05 Ω | | | 24 | Flame retardance | AEC-Q200-001 | No flame, no explosion,
no temperature higher than 350 °C | | | Vishay Sfernice Other values can be ordered upon request, but higher MOQ will apply: 1000 pieces for CHA02016. ### PREFERRED MODELS AND VALUES Recommended Values: 10 Ω / 18 Ω / 25 Ω / 50 Ω / 75 Ω / 100 Ω / 150 Ω / 180 Ω / 200 Ω / 250 Ω / 330 Ω / 500 Ω Those values are available with a MOQ of 100 pieces. Recommended termination: F Recommended tolerance: 2 % ## **DESIGN KITS** Design kits are available ex stock in CHA02016. There are 20 pieces per recommended value. F termination. 5 % tolerance. Those kits are packaged in pieces of tape and delivered in ESD bags. #### **TEST BOARDS** TRL (Thru Reflect Line) and DUT (Device Under Test) evaluation boards (50 Ω or 100 Ω) are available on request. #### **PACKAGING** Standard packaging is plastic tape and reel for all sizes. Flip chip: Tin / silver terminations (F termination option): Active face down in tape and reel. Active face up in waffle pack. One face: Gold terminations (P termination option): Active face up. Please use M termination code for active face down in tape and reel. ### Notes - CHA02016 with active face down in tape and reel have back-side blue marked to indicate right orientation - Please refer to Vishay Sfernice Application Note "Guidelines for Vishay Sfernice Resistive and Inductive Components" for soldering recommendation (document number 52029, section "3. Guidelines for Surface Mounting Components (SMD)", profile number 3 applies | | MOQ | NUMBE | | | | |-------|--|------------------------|---------------|------|------------| | SIZE | | WAFFLE PACK
2" x 2" | TAPE AND REEL | | TAPE WIDTH | | | | | MIN. | MAX. | | | 02016 | See MOQ mentioned on preferred models and values | 484 | 100 | 5000 | 8 mm | # **PACKAGING RULES** #### **Waffle Pack** Can be filled up to maximum quantity indicated in the table here above, taking into account the minimum order quantity. When quantity ordered exceeds maximum quantity of a single waffle pack, the waffle packs are stacked up on the top of each other and closed by one single cover. To get "not stacked up" waffle pack in case of ordered quantity > maximum number of pieces per package: please consult Vishay Sfernice for specific ordering code. ### **Tape and Reel** See Part Numbering information to get the quantity desired by tape. In regard to the CHA02016 size only, up to 5 empty cavities can be found every 1000 parts in the reel. Nevertheless, the number of requested parts will be respected. # Vishay Sfernice #### Note (1) Gold termination for application in hermetic package: can also be mounted on PCB with SnAg solder paste | CODIFICATION OF PACKAGING | | | | |---------------------------|--|--|--| | WAFFLE PACK | | | | | W | 100 min., 1 mult.; 100 pcs max. | | | | PLASTIC TAPE | | | | | Т | 100 min., 100 mult.; delivered in reels of 1000 pcs max. | | | | TD | 1000 min., 1000 mult.; delivered in reels of 1000 pcs | | | | TF | 5000 min., 5000 mult.; delivered in reels of 5000 pcs | | | www.vishay.com Vishay Sfernice The complex impedance of the chip resistor is given by the following equations: $$Z = \frac{R + j\omega(L - R^{2}C - L^{2}C\omega^{2})}{1 + C[(R^{2}C - 2L)\omega^{2} + L^{2}C\omega^{4}]}$$ $$\frac{[Z]}{R} = \frac{1}{1 + C[(R^{2}C - 2L)\omega^{2} + L^{2}C\omega^{4}]} \times \sqrt{1 + \left[\frac{\omega(L - R^{2}C - L^{2}C\omega^{2})}{R}\right]^{2}}$$ $$\theta = \tan^{-1}\frac{\omega(L - R^{2}C - L^{2}C\omega^{2})}{R}$$ #### Notes - $\omega = 2 \times \pi \times f$ - f: frequency R, L and C are relevant to the chip resistor itself. L_{c} and C_{g} also depend on the way the chip resistor is mounted. It is important to notice that after assembly the external reactance of L_c and C_g will be combined to internal reactance of L and C. This combination can upgrade or downgrade the HF behavior of the component. This is why we are displaying three sets of data: - $\frac{[Z]}{R}$ versus frequency curves which aim to show at a glance the intrinsic HF performance of a given chip resistor - $\frac{[Z_{total}]}{R}$ versus frequency curves which aim to show the behavior of the chip resistor when mounted These lines are terminated with adapted source and load impedance respectively Z_s and Z_l with $Z_0 = Z_L = Z_s$ (for others configurations please consult us). Equivalent circuit for S-parameters: S-parameters are computed taking into account all the resistive, inductive and capacitive elements (Z total) and $Z_0 = Z_L = Z_s = R$. For simulation purposes, those S-parameter data are available for download here: www.vishay.com/doc?53061 ### **INTERNAL IMPEDANCE CURVES** Internal impedance curve for 02016 size (F and P terminations) # INTERNAL IMPEDANCE CURVES (|Z_{TOTAL}| / R) Internal impedance curve for 02016 size (F and P terminations) # **S-PARAMETER** # CHA02016 (F and P Terminations) CHA02016 flip chip ($Z_0 = Z_I = Z_s = R = 100 \Omega$) # **Legal Disclaimer Notice** Vishay # **Disclaimer** ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein. Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.