## Precision CMOS Analog Switches

## DESCRIPTION

The DG417, DG418, DG419 monolithic CMOS analog switches were designed to provide high performance switching of analog signals. Combining low power, low leakages, high speed, low on-resistance and small physical size, the DG417 series is ideally suited for portable and battery powered industrial and military applications requiring high performance and efficient use of board space. To achieve high-voltage ratings and superior switching performance, the DG417 series is built on Vishay Siliconix's high voltage silicon gate (HVSG) process. Break-before-make is guaranteed for the DG419, which is an SPDT configuration. An epitaxial layer prevents latchup. Each switch conducts equally well in both directions when on, and blocks up to the power supply level when off.
The DG417 and DG418 respond to opposite control logic levels as shown in the truth table.

## BENEFITS

- Wide dynamic range
- Low signal errors and distortion
- Break-before-make switching action
- Simple interfacing
- Reduced board space
- Improved reliability


## FEATURES

- $\pm 15 \mathrm{~V}$ analog signal range
- On-resistance - $\mathrm{R}_{\mathrm{DS}(o n):} 20 \Omega$
- Fast switching action - $\mathrm{t}_{\mathrm{on}}$ : 100 ns
- Ultra low power requirements - $\mathrm{P}_{\mathrm{D}}: 35 \mathrm{nW}$
- TTL and CMOS compatible
- MiniDIP and SOIC packaging
- 44 V supply max. rating

Note

* This datasheet provides information about parts that are RoHS-compliant and / or parts that are non RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details


## APPLICATIONS

- Precision test equipment
- Precision instrumentation
- Battery powered systems
- Sample-and-hold circuits
- Military radios
- Guidance and control systems
- Hard disk drives


## FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION



| TRUTH TABLE |  |  |
| :---: | :---: | :---: |
| LOGIC | DG417 | DG418 |
| 0 | On | Off |
| 1 | Off | On |

## Note

- Logic " 0 " $\leq 0.8 \mathrm{~V}$

Logic " 1 " $\geq 2.4 \mathrm{~V}$


| TRUTH TABLE DG419 |  |  |
| :---: | :---: | :---: |
| LOGIC | $\mathbf{S W}_{\mathbf{1}}$ | $\mathbf{S W}_{\mathbf{2}}$ |
| 0 | On | Off |
| 1 | Off | On |

Note

- Logic " 0 " $\leq 0.8 \mathrm{~V}$

Logic " 1 " $\geq 2.4 \mathrm{~V}$

DG417, DG418, DG419

| ORDERING INFORMATION |  |  |
| :---: | :---: | :---: |
| TEMP. RANGE | PACKAGE | PART NUMBER |
| DG417, DG418 |  |  |
| $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 pin plastic MiniDIP | $\begin{gathered} \hline \text { DG417DJ } \\ \text { DG417DJ-E3 } \end{gathered}$ |
|  |  | $\begin{gathered} \hline \text { DG418DJ } \\ \text { DG418DJ-E3 } \end{gathered}$ |
|  | 8 pin narrow SOIC | $\begin{gathered} \text { DG417DY } \\ \text { DG417DY-E3 } \\ \text { DG417DY-T1 } \\ \text { DG417DY-T1-E3 } \\ \hline \end{gathered}$ |
|  |  | $\begin{gathered} \text { DG418DY } \\ \text { DG418DY-E3 } \\ \text { DG418DY-T1 } \\ \text { DG418DY-T1-E3 } \\ \hline \end{gathered}$ |
| DG419 |  |  |
| $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 pin plastic MiniDIP | $\begin{gathered} \text { DG419DJ } \\ \text { DG419DJ-E3 } \end{gathered}$ |
|  | 8 pin narrow SOIC | DG419DY DG419DY-E3 DG419DY-T1 DG419DY-T1-E3 |


| PARAMETER (VOLTAGES REFERENCED TO V-) |  | LIMIT | UNIT |
| :---: | :---: | :---: | :---: |
| V+ |  | 44 | V |
| GND |  | 25 |  |
| $\mathrm{V}_{\mathrm{L}}$ |  | (GND - 0.3) to (V+) + 0.3 |  |
| Digital inputs ${ }^{\text {a }}$, $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$ |  | $(V-)-2 \text { to }(V+)+2$ <br> or 30 mA , whichever occurs first |  |
| Current (any terminal) continuous |  | 30 | mA |
| C, S or D (pulsed at $1 \mathrm{~ms}, 10$ \% duty cycle max.) |  | 100 |  |
| Storage temperature | (AK suffix) | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
|  | (DJ, DY suffix) | -65 to +125 |  |
| Power dissipation (package) ${ }^{\text {b }}$ | 8 pin plastic MiniDIP ${ }^{\text {c }}$ | 400 | mW |
|  | 8 pin narrow SOIC ${ }^{\text {d }}$ | 400 |  |
|  | 8 pin CerDIP ${ }^{\text {e }}$ | 600 |  |

## Notes

a. Signals on $S_{x}, D_{x}$, or $I N_{x}$ exceeding $V+$ or $V$ - will be clamped by internal diodes. Limit forward diode current to maximum current ratings
b. All leads welded or soldered to PC board
c. Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$
d. Derate $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75{ }^{\circ} \mathrm{C}$
e. Derate $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$

SCHEMATIC DIAGRAM (typical channel)


Fig. 1

| SPECIFICATIONS ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS UNLESS OTHERWISE SPECIFIED$\begin{gathered} \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V} \end{gathered}$ |  | TEMP. ${ }^{\text {b }}$ | TYP. ${ }^{\text {c }}$ | A SUFFIX LIMITS $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  | $\begin{gathered} \text { D SUFFIX } \\ \text { LIMITS } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$ |  | UNIT |
|  |  |  |  | MIN. ${ }^{\text {d }}$ |  | MAX. ${ }^{\text {d }}$ | MIN. ${ }^{\text {d }}$ | MAX. ${ }^{\text {d }}$ |  |
| Analog Switch |  |  |  |  |  |  |  |  |  |  |
| Analog signal range ${ }^{\text {e }}$ | $\mathrm{V}_{\text {ANALOG }}$ |  |  |  | Full | - | -15 | 15 | -15 | 15 | V |
| Drain-source on-resistance | $\mathrm{R}_{\mathrm{DS} \text { (on) }}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}= \pm 12.5 \mathrm{~V}, \\ & \mathrm{~V}+=13.5 \mathrm{~V}, \mathrm{~V}-=-13.5 \mathrm{~V} \end{aligned}$ |  | Room | 20 | - | 35 | - | 35 | $\Omega$ |
|  |  |  |  | Full | - | - | 45 | - | 45 |  |
| Switch off leakage current | $\mathrm{I}_{\text {S(off) }}$ | $\begin{gathered} \mathrm{V}+=16.5, \mathrm{~V}-=-16.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}= \pm 15.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 15.5 \\ \mathrm{~V} \end{gathered}$ | $\begin{aligned} & \text { DG417 } \\ & \text { DG418 } \end{aligned}$ | Room | -0.1 | -0.25 | 0.25 | -0.25 | 0.25 | nA |
|  |  |  |  | Full | - | -20 | 20 | -5 | 5 |  |
|  | $I_{\text {D(off) }}$ |  |  | Room | -0.1 | -0.25 | 0.25 | -0.25 | 0.25 |  |
|  |  |  |  | Full | - | -20 | 20 | -5 | 5 |  |
|  |  |  | DG419 | Room | -0.1 | -0.75 | 0.75 | -0.75 | 0.75 |  |
|  |  |  |  | Full | - | -60 | 60 | -12 | 12 |  |
| Channel off leakage current | $I_{\text {d(on) }}$ | $\begin{gathered} V+=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V}, \\ V_{S}=V_{D}= \pm 15.5 \mathrm{~V} \end{gathered}$ | $\begin{aligned} & \text { DG417 } \\ & \text { DG418 } \end{aligned}$ | Room | -0.4 | -0.4 | 0.4 | -0.4 | 0.4 |  |
|  |  |  |  | Full | - | -40 | 40 | -10 | 10 |  |
|  |  |  | DG419 | Room | -0.4 | -0.75 | 0.75 | -0.75 | 0.75 |  |
|  |  |  |  | Full | - | -60 | 60 | -12 | 12 |  |
| Digital Control |  |  |  |  |  |  |  |  |  |  |
| Input current $\mathrm{V}_{\mathbb{N}}$ low | IIL |  |  | Full | 0.005 | -0.5 | 0.5 | -0.5 | 0.5 | $\mu \mathrm{A}$ |
| Input current $\mathrm{V}_{\text {IN }}$ high | $\mathrm{IIH}^{\text {H }}$ |  |  | Full | 0.005 | -0.5 | 0.5 | -0.5 | 0.5 |  |
| Dynamic Characteristics |  |  |  |  |  |  |  |  |  |  |
| Turn-on time | $\mathrm{t}_{\text {on }}$ | $\begin{gathered} \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \\ \text { see Switching Time } \\ \text { Test Circuit } \end{gathered}$ | $\begin{array}{\|l\|} \hline \text { DG417 } \\ \text { DG418 } \end{array}$ | Room | 100 | - | 175 | - | 175 | ns |
|  |  |  |  | Full | - | - | 250 | - | 250 |  |
| Turn-off time | $\mathrm{t}_{\text {off }}$ |  | $\begin{aligned} & \text { DG417 } \\ & \text { DG418 } \end{aligned}$ | Room | 60 | - | 145 | - | 145 |  |
|  |  |  |  | Full | - | - | 210 | - | 210 |  |
| Transition time | ${ }^{\text {t }}$ RANS | $\begin{aligned} R_{L} & =300 \Omega, C_{L}=35 \mathrm{pF}, \\ V_{S 1} & = \pm 10 \mathrm{~V}, V_{S 2}= \pm 10 \mathrm{~V} \end{aligned}$ | DG419 | Room | - | - | 175 | - | 175 |  |
|  |  |  |  | Full | - | - | 250 | - | 250 |  |
| Break-before-make time delay (DG403) | $t_{D}$ | $\begin{gathered} \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}= \pm 10 \mathrm{~V} \\ \hline \end{gathered}$ | DG419 | Room | 13 | 5 | - | 5 | - |  |
| Charge injection | Q | $\mathrm{C}_{\mathrm{L}}=10 \mathrm{nF}, \mathrm{V}_{\text {gen }}=0 \mathrm{~V}, \mathrm{R}_{\text {gen }}=0 \Omega$ |  | Room | 60 | - | - | - | - | pC |
| Source off capacitance | $\mathrm{C}_{\text {S(off) }}$ | $\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ |  | Room | 8 | - | - | - | - | pF |
| Drain off capacitance | $\mathrm{C}_{\mathrm{D} \text { (off) }}$ |  | $\begin{array}{\|l\|} \hline \text { DG417 } \\ \text { DG418 } \\ \hline \end{array}$ | Full | 8 | - | - | - | - |  |
| Channel on capacitance | $C_{\text {D(on) }}$ | $\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ | $\begin{array}{\|l\|} \hline \text { DG417 } \\ \text { DG418 } \\ \hline \end{array}$ | Room | 30 | - | - | - | - |  |
|  |  |  | DG419 | Room | 35 | - | - | - | - |  |
| Power Supplies |  |  |  |  |  |  |  |  |  |  |
| Positive supply current | $1+$ | $\begin{gathered} \mathrm{V}+=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{gathered}$ |  | Room | 0.001 | - | 1 | - | 1 | $\mu \mathrm{A}$ |
|  |  |  |  | Full | - | - | 5 | - | 5 |  |
| Negative supply current | I- |  |  | Room | -0.0001 | -1 | - | -1 | - |  |
|  |  |  |  | Full | - | -5 | - | -5 | - |  |
| Logic supply current | L |  |  | Room | 0.001 | - | 1 | - | 1 |  |
|  |  |  |  | Full | - | - | 5 | - | 5 |  |
| Ground current | $\mathrm{I}_{\text {GND }}$ |  |  | Room | -0.0001 | -1 | - | -1 | - |  |
|  |  |  |  | Full | - | -5 | - | -5 | - |  |


| SPECIFICATIONS ${ }^{\text {a }}$ (unipolar supplies) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS UNLESS OTHERWISE SPECIFIED$\begin{gathered} \mathrm{V}_{+}=12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{Vf} \end{gathered}$ | TEMP. ${ }^{\text {b }}$ | TYP. ${ }^{\text {c }}$ | ASUFFIXLIMITS <br> $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  | D SUFFIXLIMITS$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  | UNIT |
|  |  |  |  |  | MIN. ${ }^{\text {d }}$ | MAX. ${ }^{\text {d }}$ | MIN. d | MAX. ${ }^{\text {d }}$ |  |
| Analog Switch |  |  |  |  |  |  |  |  |  |
| Analog signal range ${ }^{\text {e }}$ | $\mathrm{V}_{\text {ANALOG }}$ |  | Full | - | 0 | 12 | 0 | 12 | V |
| Drain-source on-resistance | $\mathrm{R}_{\mathrm{DS} \text { (on) }}$ | $\mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=3.8 \mathrm{~V}, \mathrm{~V}+=10.8 \mathrm{~V}$ | Room | 40 | - | - | - | - | $\Omega$ |
| Dynamic Characteristics |  |  |  |  |  |  |  |  |  |
| Turn-on time | $\mathrm{t}_{\text {on }}$ | $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} \text {, }$see Switching Time Test Circuit | Room | 110 | - | - | - | - | ns |
| Turn-off time | $\mathrm{t}_{\text {off }}$ |  | Room | 40 | - | - | - | - |  |
| Break-before-make time delay | $t_{\text {D }}$ | $\begin{gathered} \text { DG419 only, } \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$ | Room | 60 | - | - | - | - |  |
| Charge injection | Q | $\mathrm{C}_{\mathrm{L}}=10 \mathrm{nF}, \mathrm{V}_{\text {gen }}=0 \mathrm{~V}, \mathrm{R}_{\text {gen }}=0 \Omega$ | Room | 5 | - | - | - | - | pC |
| Power Supplies |  |  |  |  |  |  |  |  |  |
| Positive supply current | I+ | $\begin{gathered} \mathrm{V}+=13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5.25 \mathrm{~V}, \\ \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{gathered}$ | Room | 0.001 | - | - | - | - | $\mu \mathrm{A}$ |
| Negative supply current | I- |  | Room | -0.001 | - | - | - | - |  |
| Logic supply current | IL |  | Room | 0.001 | - | - | - | - |  |
| Ground current | $\mathrm{I}_{\text {GND }}$ |  | Room | -0.001 | - | - | - | - |  |

## Notes

a. Refer to PROCESS OPTION FLOWCHART
b. Room $=25^{\circ} \mathrm{C}$, full $=$ as determined by the operating temperature suffix
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet
e. Guaranteed by design, not subject to production test
f. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)



Input Switching Threshold vs. Supply Voltages

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)


Switching Time vs. Temperature


Switching Time vs. Supply Voltages


Power Supply Currents vs. Switching


Crosstalk and Off Isolation vs. Frequency


Switching Time vs. V+


Supply Current vs. Temperature

## TEST CIRCUITS

$\mathrm{V}_{\mathrm{O}}$ is the steady state output with the switch on.

$C_{L}$ (includes fixture and stray capacitance)

$$
\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{S}} \quad \frac{\mathrm{R}_{\mathrm{L}}}{R_{\mathrm{L}}+\mathrm{r}_{\mathrm{DS}(\text { on })}}
$$



Note: Logic input waveform is inverted for switches that have the opposite logic sense.

Fig. 2 - Switching Time (DG417, DG418)


Fig. 3 - Break-Before-Make (DG419)


Fig. 4 - Transition Time (DG419)

## TEST CIRCUITS



Fig. 5 - Charge Injection


Fig. 6 - Crosstalk (DG419)


Off isolation =20 $\log \left|\frac{V_{S}}{V_{O}}\right|$

Fig. 7 - Off Isolation


Fig. 8 - Insertion Loss

## TEST CIRCUITS



Fig. 9 - Source/Drain Capacitances

## APPLICATIONS

## Switched Signal Powers Analog Switch

The analog switch in Fig. 10 derives power from its input signal, provided the input signal amplitude exceeds 4 V and its frequency exceeds 1 kHz .
This circuit is useful when signals have to be routed to either of two remote loads. Only three conductors are required: one for the signal to be switched, one for the control signal and a common return.

A positive input pulse turns on the clamping diode $D_{1}$ and charges $C_{1}$. The charge stored on $C_{1}$ is used to power the chip; operation is satisfactory because the switch requires less than $1 \mu \mathrm{~A}$ of stand-by supply current. Loading of the signal source is imperceptible. The DG419's on-resistance is a low $100 \Omega$ for a 5 V input signal.


Fig. 10 - Switched Signal Powers Remote SPDT Analog Switch

## APPLICATIONS

## Micropower UPS Transfer Switch

When $\mathrm{V}_{\mathrm{CC}}$ drops to 3.3 V , the DG 417 changes states, closing $\mathrm{S}_{\mathrm{W} 1}$ and connecting the backup cell, as shown in Fig. 10. $D_{1}$ prevents current from leaking back towards the rest of the circuit. Current consumption by the CMOS analog switch is around 100 pA ; this ensures that most of the power available is applied to the memory, where it is really needed. In the stand-by mode, hundreds of A are sufficient to retain memory data.
When the 5 V supply comes back up, the resistor divider senses the presence of at least 3.5 V , and causes a new change of state in the analog switch, restoring normal operation.

## Programmable Gain Amplifier

The DG419, as shown in Fig. 11, allows accurate gain selection in a small package. Switching into virtual ground reduces distortion caused by $\mathrm{R}_{\mathrm{DS}(\text { (on) }}$ variation as a function of analog signal amplitude.

## GaAs FET Driver

The DG419, as shown in Fig. 12 may be used as a GaAs FET driver. It translates a TTL control signal into -8 V , 0 V level outputs to drive the gate.


Fig. 11 - Micropower UPS Circuit


Fig. 12 - Programmable Gain Amplifier


Fig. 13 - GaAs FET Driver

| PRODUCT SUMMARY |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Part number | DG417 | DG417 | DG418 | DG418 | DG419 | DG419 |
| Status code | 2 | 2 | 2 | 2 | 2 | 2 |
| Configuration | SPST x 1, NC | SPST $\times 1$, NC | SPST x 1, NO | SPST x 1, NO | SPDT $\times 1$ | SPDT $\times 1$ |
| Single supply min. (V) | 5 | 5 | 5 | 5 | 5 | 5 |
| Single supply max. (V) | 40 | 40 | 40 | 40 | 40 | 40 |
| Dual supply min. (V) | 5 | 5 | 5 | 5 | 5 | 5 |
| Dual supply max. (V) | 20 | 20 | 20 | 20 | 20 | 20 |
| On-resistance ( $\Omega$ ) | 20 | 20 | 20 | 20 | 20 | 20 |
| Charge injection (pC) | 60 | 60 | 60 | 60 | 60 | 60 |
| Source on capacitance (pF) | 30 | 30 | 30 | 30 | 30 | 30 |
| Source off capacitance (pF) | 8 | 8 | 8 | 8 | 8 | 8 |
| Leakage switch on typ. ( nA ) | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
| Leakage switch off max. (nA) | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
| -3 dB bandwidth (MHz) | - | - | - | - | - | - |
| Package | $\begin{gathered} \hline \text { SO-8 (narrow) } \\ \text { AS } \end{gathered}$ | Plastic DIP-8 | $\begin{aligned} & \text { SO-8 (narrow) } \\ & \text { AS } \end{aligned}$ | Plastic DIP-8 | $\begin{aligned} & \text { SO-8 (narrow) } \\ & \text { AS } \end{aligned}$ | Plastic DIP-8 |
| Functional circuit / applications | Multi purpose, instrumentation, medical and healthcare |
| Interface | Parallel | Parallel | Parallel | Parallel | Parallel | Parallel |
| Single supply operation | Yes | Yes | Yes | Yes | Yes | Yes |
| Dual supply operation | Yes | Yes | Yes | Yes | Yes | Yes |
| Turn on time max. (ns) | 175 | 175 | 175 | 175 | 175 | 175 |
| Crosstalk and off isolation | -60 | -60 | -60 | -60 | -60 | -60 |

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg? 70051.

## SOIC (NARROW): 8-LEAD

JEDEC Part Number: MS-012


| DIM | MILLIMETERS |  | INCHES |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min | Max | Min | Max |  |  |  |  |
| A | 1.35 | 1.75 | 0.053 | 0.069 |  |  |  |  |
| $\mathrm{~A}_{1}$ | 0.10 | 0.20 | 0.004 | 0.008 |  |  |  |  |
| B | 0.35 | 0.51 | 0.014 | 0.020 |  |  |  |  |
| C | 0.19 | 0.25 | 0.0075 | 0.010 |  |  |  |  |
| D | 4.80 | 5.00 | 0.189 | 0.196 |  |  |  |  |
| E | 3.80 | 4.00 | 0.150 | 0.157 |  |  |  |  |
| e | 1.27 BSC |  |  |  |  |  | 0.050 BSC |  |
| H | 5.80 | 6.20 | 0.228 | 0.244 |  |  |  |  |
| h | 0.25 | 0.50 | 0.010 | 0.020 |  |  |  |  |
| L | 0.50 | 0.93 | 0.020 | 0.037 |  |  |  |  |
| q | $0^{\circ}$ | $8^{\circ}$ | $0{ }^{\circ}$ | $8^{\circ}$ |  |  |  |  |
| S | 0.44 | 0.64 | 0.018 | 0.026 |  |  |  |  |
| ECN: C-06527-Rev. I, 11-Sep-06 <br> DWG: 5498 |  |  |  |  |  |  |  |  |



| Dim | MILLIMETERS |  | INCHES |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Max | Min | Max |  |
| $\mathbf{A}_{\mathbf{1}}$ | 0.81 | 5.08 | 0.150 | 0.200 |
| $\mathbf{B}$ | 0.38 | 0.51 | 0.015 | 0.020 |
| $\mathbf{B}_{\mathbf{1}}$ | 0.89 | 1.65 | 0.035 | 0.065 |
| $\mathbf{C}$ | 0.20 | 0.30 | 0.008 | 0.012 |
| $\mathbf{D}$ | 9.02 | 10.92 | 0.355 | 0.430 |
| $\mathbf{E}$ | 7.62 | 8.26 | 0.300 | 0.325 |
| $\mathbf{E}_{\mathbf{1}}$ | 5.59 | 7.11 | 0.220 | 0.280 |
| $\mathbf{e}_{\mathbf{1}}$ | 2.29 | 2.79 | 0.090 | 0.110 |
| $\mathbf{e}_{\mathbf{A}}$ | 7.37 | 7.87 | 0.290 | 0.310 |
| $\mathbf{L}$ | 2.79 | 3.81 | 0.110 | 0.150 |
| $\mathbf{Q}_{\mathbf{1}}$ | 1.27 | 2.03 | 0.050 | 0.080 |
| $\mathbf{S}$ | 0.76 | 1.65 | 0.030 | 0.065 |
| ECN: S-03946-Rev. E, 09-Jul-01 |  |  |  |  |
| DWG: 5478 |  |  |  |  |

$15^{\circ}$
NOTE: End leads may be half leads.

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR SO-8


Return to Index

## Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

