

Monolithic General-Purpose CMOS Analog Switch

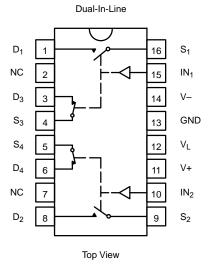
FEATURES

- ±15-V Input Range
- On-Resistance: <50 Ω
- Break-Before-Make Switching
- TTL and CMOS Compatible

BENEFITS

- Improved Signal Headroom
- Reduced Switching Errors
- No Shorting of Inputs
- Simple Interfacing

APPLICATIONS


- Audio Switching
- Instrumentation
- Battery Powered Systems

DESCRIPTION

The DG5043 solid state analog switch is recommended for general purpose applications in instrumentation, and process control. Built on the Vishay Siliconix PLUS-40 high voltage CMOS process, this device provides ease-of-use and performance advantages to the system designer. Key performance features of the DG5043 are 1- μ s switching, low

power supply requirements, and break-before-make switching. Each switch conducts equally well in either direction, when on, and blocks up to 30 V peak-to-peak when off. Off leakage current is 1-nA maximum. An epitaxial layer prevents latch up. For new designs, DG403 is recommended.

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE					
Logic	SW_1, SW_2	SW ₃ , SW ₄			
0	OFF	ON			
1	ON	OFF			

ORDERING INFORMATION					
Temp Range	Package	Part Number			
0 to 70°C	16-Pin Plastic DIP	DG5043CJ			

ABSOLUTE MAXIMUM RATINGS

V+ to V	44 V
GND to V-	25 V
V _L (GND – 0.3 \	/) to 44 V
Digital Inputs ^a V _S , V _D (V–) –2 V to (V+	plus 2 V)
or 30 mA, whichever or	ccurs first
Current (Any Terminal) Continuous	. 30 mA
Current, S or D (Pulsed 1 ms 10% duty)	100 mA
Storage Temperature	to 125°C

Power Dissipation (Package)b

16-Pin Plastic DIP^c 470 mW

Notes:

- a. Signals on S_X , D_X , or IN_X exceeding V+ or V- will be clamped by internal diada. Unit for word diada
- diodes. Limit forward diode current to maximum current ratings.

b. All leads welded or soldered to PC Board.
c. Derate 6 mW/°C above 75°C

Vishay Siliconix

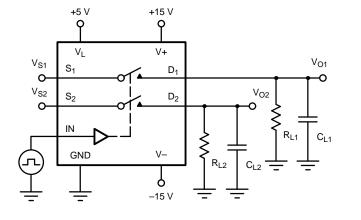
SPECIFICATIONS								
Parameter		Test Conditions Unless Otherwise Specified V+ = 15 V, V- = -15 V $V_L = 5 V, V_{IN} = 2 V, 0.8 V^e$		C Suffix 0 to 70°C				
	Symbol		Temp ^a	Min ^c	Тур ^ь	Max ^c	Unit	
Analog Switch			•					
Analog Signal Range ^d	VANALOG		Full	-15		15	V	
Drain-Source On-Resistance	r _{DS(on)}	$I_{S} = -10 \text{ mA}, V_{D} = \pm 10 \text{ V}$	Room Full			50 75	Ω	
Switch Off Leakage Current	I _{S(off)}	V _S = V _D = 14 V	Room Full	-1 -100		1 100	nA	
	'S(off)	$V_{S} = V_{D} = -14 V$	Room Full	-1 -100		1 100		
Channel On Leakage Current		$V_{S} = V_{D} = 14 V$	Room Full			2 200		
	D(on)	$V_{S} = V_{D} = -14 V$	Room Full	-2 -200				
Digital Control								
Input Current with VIN Low	Ι _{ΙL}	V _{IN} Under Test = 0.8 V	Full	-1		1		
Input Current with VIN High	lін	V _{IN} Under Test = 2 V	Full	-1		1	μA	
Dynamic Characteristics			-	-	-	-	-	
Turn-On Time	t _{ON}	Vo = +10 V R = 1 kQ C = 35 pE	Room			1200	ns	
Turn-Off Time	t _{OFF}	V_{S} = \pm 10 V, R_{L} = 1 k Ω,C_{L} = 35 pF See Figure 1	Room			700		
Charge Injection ^d	Q	C_L = 10 nF, V_{gen} = 0 V, R_{gen} = 0 Ω	Room		30		рС	
Off Isolation ^d	OIRR	$R_L = 75 \Omega$, $C_L = 5 pF$, f = 1 MHz	Room		75		dB	
Crosstalk (Channel-to-Channel) ^d	X _{TALK}	R_L = 75 Ω , V_S = 2 V_{P-P} , f = 1 MHz	Room		89			
Source Off Capacitance	C _{S(off)}		Room		15		pF	
Drain Off Capacitanced	C _{D(off)}	$V_D = V_S = 0 V$, f = 1 MHz	Room		17			
Channel On Capacitanced	C _{D(on)}	1	Room		45			
Power Supplies	-			-	-	-	-	
Positive Supply Current	l+	V _{IN} = 0 or 2.4 V	Full			300		
Negative Supply Current	I–		Full	-300			1.	
Logic Supply Current	١L	V _{IN} = 0 or 2.4 V	Full		<u> </u>	300	μA	
Ground Current	I _{GND}		Full	-300			1	

Notes:

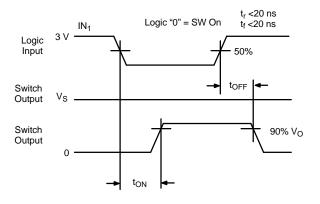
a.

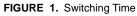
b.

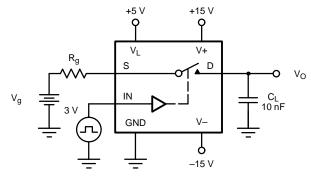
Room = 25°C, Full = as determined by the operating temperature suffix. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.


c. d. Guaranteed by design, not subject to production test. V_{IN} = input voltage to perform proper function.

e.




DG5043 Vishay Siliconix


TEST CIRCUITS

CL (includes fixture and stray capacitance)

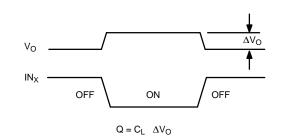


FIGURE 2. Charge Injection

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.