Low-Voltage Single SPDT Analog Switch

DESCRIPTION

The DG2001 is a single-pole/double-throw monolithic CMOS analog switch designed for high performance switching of analog signals. Combining low power, high speed, low on-resistance and small physical size, the DG2001 is ideal for portable and battery powered applications requiring high performance and efficient use of board space.
The DG2001 is built on Vishay Siliconix's low voltage JI2 process. The DG2001 has a minimum 2000 V, ESD protection, per Method 3015.7. An epitaxial layer prevents latchup. Break-before-make is guaranteed.
The switch conducts equally well in both directions when on, and blocks up to the power supply level when off.

FEATURES

- Halogen-free according to IEC 61249-2-21 Definition
- Low Voltage Operation (1.8 V to 5.5 V)
- Low On-Resistance - R $\mathrm{RON}: 3 \Omega$
- Fast Switching - $\mathrm{t}_{\mathrm{ON}}: 20 \mathrm{~ns}, \mathrm{t}_{\mathrm{OFF}}: 10 \mathrm{~ns}$
- Low Leakage - $\mathrm{I}_{\text {Сом: }} 0.2 \mathrm{nA}$
- Low Charge Injection - $\mathrm{Q}_{\mathrm{INJ}}: 5 \mathrm{pC}$
- Low Power Consumption
- TTL/CMOS Compatible
- ESD Protection > 2000 V (Method 3015.7)
- TSOP-6 Package
- Compliant to RoHS Directive 2002/95/EC

BENEFITS

- Reduced Power Consumption
- Simple Logic Interface
- High Accuracy
- Reduce Board Space

APPLICATIONS

- Cellular Phones
- Communication Systems
- Portable Test Equipment
- Battery Operated Systems
- Sample and Hold Circuits

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE		
Logic	NC	NO
0	ON	OFF
1	OFF	ON

ORDERING INFORMATION		
Temp Range	Package	Part Number
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	TSOP-6	DG2001DV-T1
		DG2001DV-T1-E3

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted)				
Parameter		Symbol	Limit	Unit
Referenced V+ to GND			- 0.3 to +6	V
IN, COM, NC, $\mathrm{NO}^{\text {a }}$			- 0.3 to (V++0.3)	
Continuous Current (Any Terminal)			± 50	mA
Peak Current (Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)			± 200	
ESD (MIL-STD-883B, Method 3			> 2000	V
Storage Temperature (D Suffix)			- 65 to 125	${ }^{\circ} \mathrm{C}$
Power Dissipation (Packages) ${ }^{\text {b }}$	TSOP-6 ${ }^{\text {c }}$		570	mW

Notes:

a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings. b. All leads welded or soldered to PC Board.
c. Derate $7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

SPECIFICATIONS (V+ = 2 V)							
Parameter	Symbol	Test Conditions Unless Otherwise Specified$\begin{gathered} \mathrm{V}+=2 \mathrm{~V}, \pm 10 \% \\ \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V} \text { or } 1.6 \mathrm{~V}^{\mathrm{e}} \end{gathered}$	Temp. ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	Max. ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}} \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$		Full	0		V+	V
On-Resistance	R_{ON}	$\mathrm{V}+=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=10 \mathrm{~mA}$	Room Full		$\begin{aligned} & \hline 15 \\ & 17 \end{aligned}$	$\begin{aligned} & 30 \\ & 32 \end{aligned}$	
$\mathrm{R}_{\text {ON }}$ Flatness $^{\text {d }}$	R_{ON} Flatness	$\mathrm{V}+=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V}$ to $\mathrm{V}+, \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=10 \mathrm{~mA}$	Room		5		Ω
Switch Off Leakage Current ${ }^{9}$	$\mathrm{I}_{\mathrm{NO} \text { (off) }}$ $I_{\mathrm{NC} \text { (off) }}$	$\begin{gathered} \mathrm{V}_{+}=2.2 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=0.5 \mathrm{~V} / 1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1.5 \mathrm{~V} / 0.5 \mathrm{~V} \end{gathered}$	Room Full	$\begin{array}{r} -300 \\ -3.5 \end{array}$		$\begin{aligned} & 300 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \mathrm{pA} A \\ & \mathrm{nA} \end{aligned}$
	$\mathrm{I}_{\text {com(off) }}$		Room Full	$\begin{aligned} & \hline-300 \\ & -3.5 \end{aligned}$		$\begin{gathered} \hline 300 \\ 3.5 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
Channel-On Leakage Current ${ }^{9}$	$\mathrm{I}_{\text {com(on) }}$	$\mathrm{V}_{+}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=0.5 \mathrm{~V} / 1.5 \mathrm{~V}$	Room Full	$\begin{aligned} & -350 \\ & -3.5 \end{aligned}$		$\begin{aligned} & 300 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	1.6			v
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.4	
Input Capacitance	$\mathrm{C}_{\text {in }}$		Full		4		pF
Input Current	$\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\mathrm{INH}}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or V_{+}	Full	1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time	t_{ON}	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	Room Full		30	$\begin{aligned} & \hline 50 \\ & 53 \end{aligned}$	
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$		Room Full		15	$\begin{aligned} & 30 \\ & 33 \end{aligned}$	ns
Break-Before-Make Time	t_{d}		Room	1	15		
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$	Room		1	10	pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room		-71		
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		-70		dB
$\mathrm{N}_{\mathrm{O}}, \mathrm{N}_{\mathrm{C}}$ Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$ $\mathrm{C}_{\mathrm{NC} \text { (off) }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}+\mathrm{f}=1 \mathrm{MHz}$	Room		17		pF
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{Con}^{\text {O }}$		Room		50		
Power Supply							
Power Supply Range	V+			1.8		2.20	V
Power Supply Current	I+	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{+}			0.01	1	$\mu \mathrm{A}$
Power Consumption	P_{C}					2.2	$\mu \mathrm{W}$

SPECIFICATIONS (V+ = 3 V)							
Parameter	Symbol	Test Conditions Unless Otherwise Specified$\begin{gathered} \mathrm{V}+=3 \mathrm{~V}, \pm 10 \% \\ \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V} \text { or } 2 \mathrm{~V} \end{gathered}$	Temp. ${ }^{\text {a }}$	Limits $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			Unit
				Min. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	Max. ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}, \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$		Full	0		V+	V
On-Resistance	R_{ON}	$\mathrm{V}_{+}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=10 \mathrm{~mA}$	Room Full		$\begin{aligned} & \hline 5 \\ & 6 \end{aligned}$	$\begin{gathered} \hline 9.2 \\ 10.2 \end{gathered}$	
R ${ }_{\text {ON }}$ Flatness ${ }^{\text {d }}$	$\begin{gathered} \mathrm{R}_{\mathrm{ON}} \\ \text { Flatness } \end{gathered}$	$\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V}$ to $\mathrm{V}+\mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=10 \mathrm{~mA}$	Room		3		Ω
Switch Off Leakage Current ${ }^{9}$	$\mathrm{I}_{\mathrm{NO} \text { (off), }}$ $I_{\mathrm{NC} \text { (off) }}$	$\begin{gathered} \mathrm{V}+=3.3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$	Room Full	$\begin{aligned} & -400 \\ & -4.5 \end{aligned}$		$\begin{gathered} 400 \\ 4.5 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
	$\mathrm{I}_{\text {com(off) }}$		Room Full	$\begin{aligned} & \hline-400 \\ & -4.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 400 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
Channel-On Leakage Current ${ }^{9}$	${ }^{\text {comm(on) }}$	$\mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V} / 3 \mathrm{~V}$	Room Full	$\begin{aligned} & -450 \\ & -4.5 \end{aligned}$		$\begin{aligned} & 400 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \mathrm{pA} A \\ & \mathrm{nA} \end{aligned}$
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	2			
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.4	
Input Capacitance	$\mathrm{C}_{\text {in }}$		Full		4		pF
Input Current	$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or V_{+}	Full	1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time	t_{ON}	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	Room Full		24	$\begin{aligned} & 45 \\ & 48 \end{aligned}$	ns
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$		Room Full		12	$\begin{aligned} & 30 \\ & 33 \end{aligned}$	
Break-Before-Make Time	t_{d}		Room	1	13		
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$	Room		3	10	pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room		-71		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		-70		
$\mathrm{N}_{\mathrm{O}}, \mathrm{N}_{\mathrm{C}}$ Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$, $\mathrm{C}_{\mathrm{NC} \text { (off) }}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or $\mathrm{V}+$, $\mathrm{f}=1 \mathrm{MHz}$	Room		17		pF
Channel-On Capacitance ${ }^{\text {d }}$	C_{ON}		Room		50		
Power Supply							
Power Supply Range	V+			2.7		3.3	V
Power Supply Current	I+	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{+}			0.01	1	$\mu \mathrm{A}$
Power Consumption	P_{C}					3.3	$\mu \mathrm{W}$

SPECIFICATIONS (V+ = 5 V)							
Parameter	Symbol	Test Conditions Unless Otherwise Specified$\begin{gathered} \mathrm{V}_{+}=5 \mathrm{~V}, \pm 10 \% \\ \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V} \text { or } 2.4 \mathrm{~V}^{\mathrm{e}} \end{gathered}$	Temp. ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	Max. ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}} \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$		Full	0		V+	V
On-Resistance	R_{ON}	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=10 \mathrm{~mA}$	Room Full		$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	
$\mathrm{R}_{\text {ON }}$ Flatness $^{\text {d }}$	R_{ON} Flatness	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=0 \mathrm{~V}$ to $\mathrm{V}+\mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=10 \mathrm{~mA}$	Room		2		Ω
Switch Off Leakage Current ${ }^{9}$	$\mathrm{I}_{\mathrm{NO} \text { (off) }}$ $\mathrm{I}_{\mathrm{NC} \text { (off) }}$	$\begin{gathered} \mathrm{V}+=5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$	Room Full	$\begin{aligned} & -900 \\ & -5.5 \end{aligned}$		$\begin{aligned} & 900 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
	$\mathrm{I}_{\text {com(off) }}$		Room Full	$\begin{aligned} & -900 \\ & -5.5 \end{aligned}$		$\begin{gathered} 900 \\ 5.5 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
Channel-On Leakage Current ${ }^{9}$	$\mathrm{I}_{\text {com(on) }}$	$\begin{gathered} \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}+=5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V} / 4.5 \mathrm{~V} \end{gathered}$	Room Full	$\begin{gathered} -1000 \\ -5.5 \\ \hline \end{gathered}$		$\begin{gathered} 1000 \\ 5.5 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	2.4			V
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.8	V
Input Capacitance	$\mathrm{C}_{\text {in }}$		Full		4		pF
Input Current	$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}+$	Full	1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time	t_{ON}	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	Room Full		20	$\begin{array}{r} 37 \\ 40 \\ \hline \end{array}$	ns
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$		$\begin{gathered} \text { Room } \\ \text { Full } \\ \hline \end{gathered}$		10	$\begin{aligned} & 27 \\ & 30 \\ & \hline \end{aligned}$	
Break-Before-Make Time	t_{d}		Room	1	10		
Charge Injection ${ }^{\text {d }}$	QinJ	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$	Room		7	10	pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room		-71		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		-70		
Source-Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$ $\mathrm{C}_{\mathrm{NC} \text { (off) }}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or $\mathrm{V}+\mathrm{f}=1 \mathrm{MHz}$	Room		17		pF
Channel-On Capacitance ${ }^{\text {d }}$	C_{ON}		Room		50		
Power Supply							
Power Supply Range	V+			4.5		5.5	V
Power Supply Current	I+	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{+}			0.01	1	$\mu \mathrm{A}$
Power Consumption	P_{C}					5.5	$\mu \mathrm{W}$

Notes:

a. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating suffix.
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
c. Typical values are for design aid only, not guaranteed nor subject to production testing.
d. Guarantee by design, nor subjected to production test.
e. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
f. Guaranteed by 5 V leakage testing, not production tested.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

$R_{\text {ON }}$ vs. $V_{\text {COM }}$ and Supply Voltage

Supply Current vs. Temperature

Leakage Current vs. Temperature

\mathbf{R}_{ON} vs. Analog Voltage and Temperature

Supply Current vs. Input Switching Frequency

Leakage vs. Analog Voltage

Vishay Siliconix

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Switching Time vs. Temperature and Supply Voltage

Switching Threshold vs. Supply Voltage

Insertion Loss, Off -Isolation Crosstalk vs. Frequency

Charge Injection vs. Analog Voltage

TEST CIRCUITS

C_{L} (includes fixture and stray capacitance)

$$
\mathrm{v}_{\mathrm{OUT}}=\mathrm{v}_{\mathrm{COM}}\left(\frac{\mathrm{R}_{\mathrm{L}}}{R_{\mathrm{L}}+\mathrm{R}_{\mathrm{ON}}}\right)
$$

Logic "1" = Switch On
Logic input waveforms inverted for switches that have the opposite logic sense.
Figure 1. Switching Time

Figure 2. Break-Before-Make Interval

IN depends on switch configuration: input polarity determined by sense of switch.

Figure 3. Charge Injection

TEST CIRCUITS

Figure 4. Off-Isolation

Figure 5. Channel Off/On Capacitance

TSOP: 5/6-LEAD
JEDEC Part Number: MO-193C

Dim	MILLIMETERS			INCHES		
	Min	Nom	Max	Min	Nom	Max
A	0.91	-	1.10	0.036	-	0.043
A_{1}	0.01	-	0.10	0.0004	-	0.004
A_{2}	0.90	-	1.00	0.035	0.038	0.039
b	0.30	0.32	0.45	0.012	0.013	0.018
c	0.10	0.15	0.20	0.004	0.006	0.008
D	2.95	3.05	3.10	0.116	0.120	0.122
E	2.70	2.85	2.98	0.106	0.112	0.117
E_{1}	1.55	1.65	1.70	0.061	0.065	0.067
e	0.95 BSC			0.0374 BSC		
e_{1}	1.80	1.90	2.00	0.071	0.075	0.079
L	0.32	-	0.50	0.012	-	0.020
L_{1}	0.60 Ref			0.024 Ref		
L_{2}	0.25 BSC			0.010 BSC		
R	0.10	-	-	0.004	-	-
θ	0°	4°	8°	0°	4°	8°
θ_{1}	7° Nom			$7^{\circ} \mathrm{Nom}$		
ECN: C-06593-Rev. I, 18-Dec-06 DWG: 5540						

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

