

www.vishay.com

Protection Diodes

Application Note

Selecting Automotive Power Line Polarity Protection Diodes

By Soo Man (Sweetman) Kim, Senior Application Manager

A major challenge in automotive design is protecting electronics - such as control units, sensors, and entertainment systems - against damaging reverse voltages, voltage transients, electrostatic discharge (ESD), and noise that are present on the power line. Rectifiers are ideal solutions for automotive electronic power line protection and have several important parameters for these applications, including forward current, repetitive reverse voltage, forward surge current, and fusing rate.

PARAMETERS IN AUTOMOTIVE ELECTRONIC EQUIPMENT TEST CONDITIONS AND APPLICATIONS

Basic circuits for polarity protection are shown in Fig 1. Circuit (A) offers polarity protection only, while circuit (B) features polarity protection with load dump suppression.

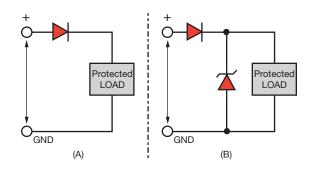


Fig. 1 - Basic Polarity Protection Circuits

Following are definitions for major parameters to consider when selecting a power line polarity protection diode for your automotive application.

Maximum Repetitive Reverse Voltage (V_{RRM})

Revision: 09-Oct-12

The maximum repetitive reverse voltage is the maximum voltage that the diode can withstand in reverse bias mode. In reverse bias mode, leakage current through the diode can generate heat in the diode junction and lead to thermal runaway. Tests that simulate this condition include the U.S.'s ISO-7637-2 pulse 1 and 3a, and Japan's JASO D001-94, standard type B and E. Each peak voltage for these tests is specific in the folowing tables and figures.

Document Number: 8996

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Selecting Automotive Power Line Polarity Protection Diodes

TABLE	TABLE 1: ISO-7637-2, PULSE 1										
SYSTEM (V)	Us (V)	R _i (Ω)	t _d (ms)	t _r (μs)	t ₁ (s)	t ₂ (ms)	t ₃ (μs)	BURST CYCLE/ PULSE REPITITION TIME (s)	TEST PULSES		
12	- 75 to - 150	10	2	1	× 0 5	200	< 100	Min. 0.5	500		
24	- 300 to - 600	50	1	3	> 0.5 200		< 100	IVIII1. U.S	500		



Fig. 2 - ISO-7637-2, Pulse 1

TABLE	TABLE 2: ISO-7637-2, PULSE 3a										
SYSTEM (V)	Us (V)	R _i (Ω)	t _d (ns)	t _r (ns)	t ₁ (μs)	t ₄ (ms)	t ₅ (ms)	BURST CYCLE/ PULSE REPITITION TIME (s)	TEST TIME (h)		
12	- 112 to - 220	50	150	5	100	10	90	min. 90 to max. 100	1		
24	- 150 to - 300	50	150	5	100	10	90	mm. 90 to max. 100	I		



Fig. 3 - ISO-7637-2, Pulse 3a

ш

Revision: 09-Oct-12

Document Number: 89961

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Selecting Automotive Power Line Polarity Protection Diodes

TABLE 3: JASO D001-94										
CLASSIFICATION	TYPE OF TEST		V _P (V)	t _d (μs)	f (Hz)	R _i (Ω)	NUMBER OF PULSES			
12.V. ovetom	Туре	B-1	- 80	60 000	1/30	8	100			
12 V system		B-2	- 250	2000		80	100			
24 V system		E	- 320	26 000		210	100			

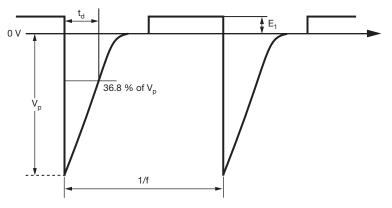


Fig. 4 - JASO D001-94 Type B and E

According to the above test conditions, the V_{RRM} of a diode for power line protection should be 300 V to 400 V for a 12 V power train and 600 V for a 24 V power train.

Forward Current (I_{F(AV)})

The specification for forward current in datasheets usually means the maximum average forward current the diode can handle in the forward bias state, given the thermal limitations of the package. This parameter is related to the current usage of the circuit in operation.

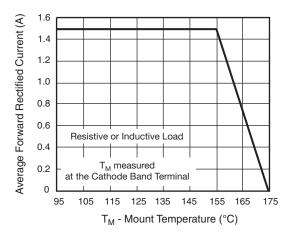


Fig. 5 - The Maximum Forward Current Derating Curve of an AS1P on a 5 mm x 5 mm Cu Pad with a FR-4 PCB

The forward current capability varies by the temperature of the diode's junction, as show in Fig 5. Other related parameters include thermal resistance with the symbols $R_{\theta JC}$, $R_{\theta JA}$, $R_{\theta JL}$, and $R_{\theta JM}$.

Revision: 09-Oct-12	3	Document Number: 89961
For technical questions within your reg	gion: <u>DiodesAmericas@vishay.com</u> , <u>DiodesAsia@vishay.c</u>	com, DiodesEurope@vishay.com
	ANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.co</u>	

ш

Selecting Automotive Power Line Polarity Protection Diodes

Forward Surge Current (I_{FSM})

The specified forward surge current in a datasheet is the maximum peak current the diode can handle in the forward bias state within specified time and pulse conditions. This rating is limited by the diode's thermal capacity.

The forward surge current specification is related to two major operations and is simulated in the ISO-16750-2 and JASO D001-94 automotive standards. The first operation is protecting circuitry against the high currents that occur during the load dump condition. The second operation is simulated by ISO-7637-2 test pulse 2a and 3b, consisting of 50 ms and 100 ms pulse widths and 2 Ω and 50 Ω line impedance, respectively. This is a relatively small amount of energy when compared to the forward surge current at the load dump test condition.

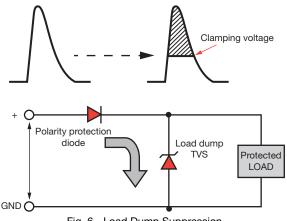
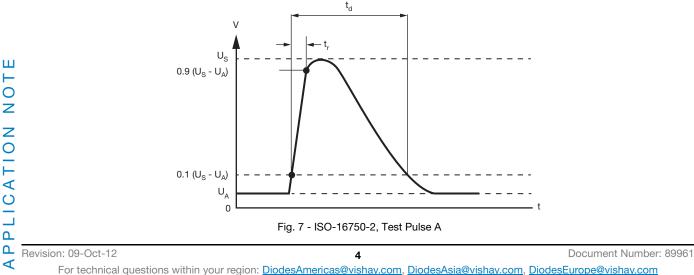



Fig. 6 - Load Dump Suppression

Load dump suppression is simulated by tests such as ISO-16750-2 test A and B, JASO standard type A and D, and others.

TABLE 4: ISO-16750-2, TEST PULSE A								
PARAMETER	TYPE OF	SYSTEM						
	12 V	24 V	MINIMUM TEST REQUIREMENTS					
U _s a (V)	79 to 101	151 to 202						
R _i a (Ω)	0.5 to 4	1 to 8	10 pulses at intervals of 1 minute					
t _d (ms)	40 to 400	100 to 350	10 pulses at intervals of 1 minute					
t _r (ms)	10/0/-5	10/0/-5	1					

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Selecting Automotive Power Line Polarity Protection Diodes

TABLE 5: ISO-16750-2, TEST PULSE B									
PARAMETER	TYPE OF	SYSTEM							
	12 V	24 V	MINIMUM TEST REQUIREMENTS						
U _s a (V)	79 to 101	151 to 202							
U _s (V)	35	65							
R _i a (Ω)	0.5 to 4	1 to 8	10 pulses at intervals of 1 minute						
t _d (ms)	40 to 400	100 to 350							
t _r (ms)	10/0/-5	10/0/-5							

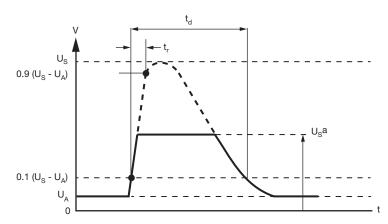
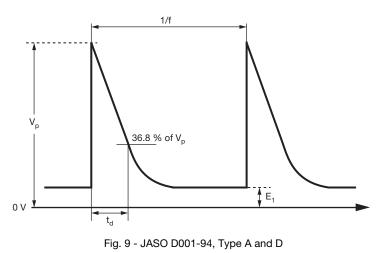



Fig. 8 - ISO-16750-2, Test Pulse B

TABLE 6: JASO D001-94, TYPE A AND D										
CLASSIFICATION	TYPE OF TEST		V _p (V)	t _d (μs)	f (Hz)	R _i (Ω)	NUMBER OF PULSES			
10 V avatam	Туре	A-1	70	200 000	-	0.8	1			
12 V system		A-2	110	2.5	1/30	0.4	10			
24 V avetem		D-1	110	400 000	-	1.5	1			
24 V system		D-2	170	2.5	1/30	0.9	10			

PPLICATION NOT

ш

۵	Revision: 09-Oct-12
∢	For technical o

Document Number: 89961

Selecting Automotive Power Line Polarity Protection Diodes

In this situation, high surge current is passing through the polarity protection diode, and it requires a high enough forward surge capability to avoid failure. Estimating the surge current value in load dump suppression tests can be accomplished with the equation:

 $I_{peak} = (V_{peak} - V_{Fd} - V_{clamping})/(R_i + R_{zd})$

Vpeak: Surge voltage

V_{clamping}: Clamping voltage

V_{Fd}: Forward voltage drop of polarity protection diode

R_i: Line impedance

R_{zd}: Resistance of clamping device

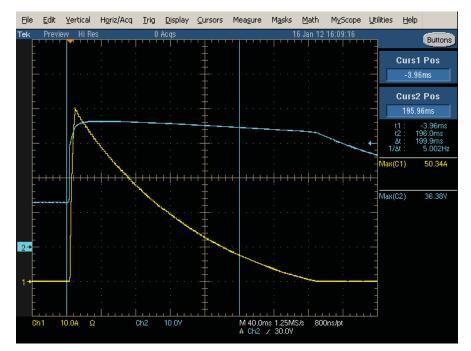


Fig. 10 - With the Applied Condition of 101 V U_s, 12 V U_B, and 1.25 Ω Line Impedance, as Specified by ISO-16750-2 test A, the Peak Current is 51.3 A and the Actual Clamped Current is 50.3 A.

For a detailed explanation of load dump protection, please refer to <u>www.vishay.com/doc?88490</u>

ESD

ESD influences the operating stability and lifetime reliability of electronic modules in vehicles.

- ISO-10605 and JASO standard 5.8 specify testing conditions for this parameter.

Revision: 09-Oct-12

Document Number: 89961

Selecting Automotive Power Line Polarity Protection Diodes

TABLE 7: ISO-10605: 2001 B.4.2, TEST SEVERITY LEVELS FOR ELECTRONIC MODULES (POWER-UP TEST)

TYPE OF DISCHARGE		MINIMUM NUMBER OF				
TTE OF DISCHARGE	SELECTED LEVEL	I	II	Ш	IV	DISCHARGES ⁽¹⁾
Direct discharge	(2)	± 4	± 6	± 7	± 8	2
Air discharge	(2)	± 4	± 8	± 14	± 15	5

Notes

⁽¹⁾ Minimum delay between discharges is 5 s

⁽²⁾ Values to be agreed between vehicle manufacturer and supplier

TABLE 8	TABLE 8: JASO D001-94 AUTOMOBILE STANDARD									
			TEST C	ONDITIONS						
TYPE OF TEST		TEST VOLTAGE IMPRESSING CYCLE (kV) TIMES		NUMBER OF IMPRESSIONS	LOCATION OF IMPRESSIONS					
Type A	A-1	± 0.5			Input and output terminals					
Туре А	A-2	± 1			input and output terminals					
	B-1	± 1								
Туре В	B-2	± 5	1 s or more	3 times or more						
	C-1	± 5	-		Operating portion					
Туре С	C-2	± 10	-							
	C-3	± 15								

Non-Repetitive Avalanche Energy (E_{AS})

This non-repetitive avalanche energy of a diode specifies the maximum energy it can absorb in the reverse bias state to protect circuits from inductive kick back transients from motors and solenoids, or induced high reverse voltages. There is no automotive standard for this specification.

Temperature Conditions for Automotive Electronics and Components

The JASO specifies the operating temperature range for automotive electronics as - 40 °C to + 100 °C based on their location, such as the trunk, engine, or other places.

TABLE 9: SETTING TEMPERATURES FOR TESTING					
CLASSIFICATION OF EQUIPMENT	SETTING TEMPERATURES (°C)				
Class 1	- 30, - 5, 25, 65, 80				
Class 2	- 30, - 5, 25, 65, 80				
Class 3	- 30, - 5, 25, 65, 100 (125) ⁽¹⁾				
Class 4	As agreed between the persons concerned				

0 Note ⁽¹⁾ The (125) of Class 3 is carried out according to the necessary conditions

Z

0

۵

ш \vdash

Equipment is classified as follows:

- Class 1: Installed in the vehicle compartment and the trunk room (other than Class 4)
- Class 2: Installed outside the vehicle (other than Class 4)
- Class 3: Installed inside the engine room (other than Class 4)
- Class 4: Installed at or near the high-temperature portion or other special portion _

Δ Revision: 09-Oct-12 4

7 Document Number: 89961 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Selecting Automotive Power Line Polarity Protection Diodes

TABLE 10: VISHAY'S HIGH CURRENT DENSITY SURFACE MOUNT ESD CAPABILITY RECTIFIERS										
SERIES	V _{RRM} (V)	I _F (A)	I _{FSM} (A)	V _F (V) A	AT I _F (A)	PACKAGE				
MSE1P		1.0	20	0.925	1.0	MicroSMP				
SE10P	100 to 600	1.0	25	0.860	1.0	DO-220AA (SMP)				
SE15P	_	1.5	30	0.868	1.5	DO-220AA (SMP)				

VISHAY RECTIFIERS FOR POWER LINE POLARITY PROTECTION

Vishay's ESD capability rectifiers offer low forward voltage drop and meet ESD test levels as outlined in the following table.

TABLE 11: ESD IMMUNITY STANDARDS $(T_A = 25 \ ^{\circ}C \text{ unless otherwise noted})$									
STANDARD	TEST TYPE	TEST CONDITIONS	SYMBOL	CLASS	VALUE				
AEC-Q101-001	Human body model (contact mode)	C = 100 pF, R = 1.5 Ω		H3B	> 8 kV				
AEC-Q101-002	Machine model (contact mode)	C = 200 pF, R = 0 Ω		M4	> 400 kV				
JESD22-A114	Human body model (contact mode)	C = 150 pF, R = 1.5 Ω	N	3B	> 8 kV				
JESD22-A114	Machine model (contact mode)	C = 200 pF, R = 0 Ω	V _C	С	> 400 kV				
IEC 61000-4-2 ⁽²⁾	Human body model (contact mode)	C = 150 pF, R = 150 Ω		4	> 8 kV				
	Human body model (air -discharge mode) ⁽¹⁾	C = 150 pF, R = 150 Ω		4	> 15 kV				

Notes

⁽¹⁾ Immunity to IEC 61000-4-2 air discharge mode has a typical performance > 30 kV

through the band-gap in highly doped p-n junctions.

(2) System ESD standard

Vishay's avalanche rectifiers offer the low forward voltage drop of common rectifiers, while providing the avalanche capability to protect circuits from induced transient voltages through the power line, inductive kick back transient voltage from motors and solenoids, and induced transient voltages from outside the power line.

TABLE 12: VISHAY'S SURFACE MOUNT AVALANCHE RECTIFIERS										
SERIES	V _{RRM} (V)	I _F (A)	I _{FSM} (A)	V _F (V) AT I _F (A)		E _{AS} (mJ)	PACKAGE			
AS1P	200 to 1000	1.5	30	0.89	1.5	20	DO-220A			
BYG10	200 to 1600	1.5	30	1.15	1.5	20	DO-214AC (SMA)			
AS3BJ	600	3.0	90	0.88	3.0	30	DO-214AA (SMB)			
AS3P	200 to 1000	3.0	70	0.90	3.0	30	TO-277A			
AS4P	200 to 1000	4.0	100	0.92	4.0	30	TO-277A			

111 Avalanche rectifiers are designed to protect against avalanche breakdown, which is caused by ionization created by electron-hole pairs. This is different than Zener breakdown, which results from quantum mechanical tunneling of carriers 0 Z PLICATION ۵

4

Revision: 09-Oct-12

Document Number: 89961

Selecting Automotive Power Line Polarity Protection Diodes

References

Fulup, W. "Calculation of Avalanche Breakdown of Silicon P-N junctions." Solid-State Electronics 10.1 (1967): 39-43. Print. Hart, Daniel W. Introduction to Power Electronics. Taiwan: Prentice Hall/Pearson Education, 2002. Print.

Horowitz, Paul, and Winfield Hill. The Art of Electronics. Cambridge: Cambridge University Press, 1980. Print.

IEC 61000-4-2: 1995: Electromagnetic compatibility (EMC) - Part 4: Testing and measurement techniques; Section 2: Electrostatic discharge immunity test

ISO-10605: 2001: Road vehicles - Test methods for electrical disturbances from electrostatic discharge

ISO-16750-2: 2010: Road vehicles - Environmental conditions and testing for electrical and electronic equipment

ISO-7637-2: 2010: Road vehicles - Electrical disturbance by conduction and coupling – Part 2: Electrical transient conduction along supply lines only

JASO D001-94: Japanese automobile standard - General rules of environmental testing methods for automotive electronic equipment

IEC 61000-4-2: 1995 Electromagnetic compatibility (EMC) - Part 4: Testing and measurement techniques - Section 2: Electrostatic discharge immunity tes

ш