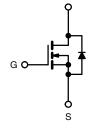

Vishay Siliconix



E Series Power MOSFET

PRODUCT SUMMA	RY	
V _{DS} (V) at T _J max.	650)
R _{DS(on)} max. at 25 °C (Ω)	$V_{GS} = 10 V$	0.125
Q _g max. (nC)	130)
Q _{gs} (nC)	15	
Q _{gd} (nC)	39	
Configuration	Sing	le

TO-220 FULLPAK

N-Channel MOSFET

FEATURES

- Low figure-of-merit (FOM) Ron x Qa
- Low input capacitance (Ciss)
- Reduced switching and conduction losses
- Ultra low gate charge (Q_q)
- Avalanche energy rated (UIS)
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Server and telecom power supplies
- Switch mode power supplies (SMPS)
- Power factor correction power supplies (PFC)
- Lighting
 - High-intensity discharge (HID)
 - Fluorescent ballast lighting
 - LED lighting
- Industrial
 - Welding
 - Induction heating
 - Motor drives
- · Battery chargers
- Renewable energy
 - Solar (PV inverters)

ORDERING INFORMATION	
Package	TO-220 FULLPAK
Lead (Pb)-free and Halogen-free	SiHF30N60E-GE3
Lead (Pb)-free	SiHF30N60E-E3

ABSOLUTE MAXIMUM RATINGS (T _C :	= 25 °C, unle	ss otherwis	se noted)			
PARAMETER		SYMBOL	LIMIT	UNIT		
Drain-Source Voltage		V _{DS}	600	V		
Gate-Source Voltage			V _{GS}	± 30	- V	
Continuous Drain Current (T ₁ = 150 °C) ^d	V _{GS} at 10 V	T _C = 25 °C		29		
Continuous Drain Current $(1_j = 150 \text{ C})^2$	V _{GS} at 10 V	T _C = 100 °C	ID	18	A	
Pulsed Drain Current ^a			I _{DM}	76		
Linear Derating Factor				0.29	W/°C	
Single Pulse Avalanche Energy ^b			E _{AS}	690	mJ	
Maximum Power Dissipation			P _D	37	W	
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +150	°C	
Drain-Source Voltage Slope	V _{DS} = 0 V to	80 % V _{DS}	-1) / / -1+	70		
Reverse Diode dV/dt ^e	•		dV/dt	18	V/ns	
Soldering Recommendations (Peak temperature) ^c	for 10)s		300	°C	
Mounting Torque	M3 sc	rew		0.6	Nm	

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature.

b. $V_{DD} = 50$ V, starting $T_J = 25$ °C, L = 28.2 mH, $R_q = 25 \Omega$, $I_{AS} = 7$ A.

c. 1.6 mm from case.

d. Limited by maximum junction temperature.

e. $I_{SD} \leq I_D$, dl/dt = 100 A/µs, starting T_J = 25 °C.

S16-1084-Rev. I, 06-Jun-16

1 For technical questions, contact: hvm@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

COMPLIANT HALOGEN

FREE

Vishay Siliconix

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	THERMAL RESISTANCE RATI	NGS							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	PARAMETER	SYMBOL	TYP.		MAX.			UNIT	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Maximum Junction-to-Ambient	R _{thJA}	-		65			°C ///	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Maximum Junction-to-Case (Drain)	R _{thJC}	-		3.4			-0/w	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
Static V _{DS} V _{DS} = 0 V, I _D = 250 µA 600 - - V Orain-Source Dreakdown Voltage Δ V _{DS} /T _J Reference to 25 °C, I _D = 250 µA - 0.64 - V/r Gate-Source Threshold Voltage (N) V _{GS} (m) V _{DS} = 250 µA 2.0 2.8 4.0 V/r Gate-Source Leakage I _{GSS} V _{GS} = ±20 V - - ± 100 nA Zero Gate Voltage Drain Current I _{DSS} V _{DS} = 600 V, V _{GS} = 0 V - - 100 µA Drain-Source On-State Resistance R _{DS(m)} V _{SS} = 10 V I _D = 15 A - 0.104 0.125 Ω Porward Transconductance [®] g ₁₆ V _{DS} = 0 V, V _{DS} = 10 V - 138 - Input Capacitance C _{ress} V _{DS} = 10 V, V _{DS} = 0 V, V _D									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		SYMBOL	IES	I CONDII	IONS	MIN.	TYP.	MAX.	UNI
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			T			1		[
						600		-	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$				-	0.64	-	V/°C
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Threshold Voltage (N)	V _{GS(th)}	-			2.0	2.8	4.0	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Leakage	loss				-	-	± 100	nA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1655		$V_{GS} = \pm 30$	V	-	-	± 1	μA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Zero Gate Voltage Drain Current	laaa	V _{DS} =	= 600 V, V _C	_{as} = 0 V	-	-	1	
Forward Transconductance ^a g_{fs} $V_{DS} = 8$ V, $l_p = 3$ A - 5.4 - S Dynamic Input Capacitance C_{6ss} $V_{DS} = 100$ V, $V_{DS} = 0$ V to 480 V, $V_{GS} = 0$ V - 2600 - - 138 - - 5.4 - S Beverse Transfer Capacitance C_{oss} $V_{GS} = 0$ V, $V_{DS} = 100$ V, $V_{DS} = 0$ V - 3 - - 38 - - 7.3 - - 98 - - 364 - - 346 - - 346 - - 346 - - 346 - - 346 - - 363 - - 346 - - 363 - - 363 - - 363 - - 363 - - 363 - - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - - 10	Zero date voltage Drain ourrent	USS	$V_{DS} = 600 V_{DS}$	/, V _{GS} = 0 '	V, T _J = 150 °C	-	-	100	μΛ
Dynamic Job Jo	Drain-Source On-State Resistance	R _{DS(on)}	$V_{GS} = 10 V$	I	l _D = 15 A	-	0.104	0.125	Ω
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Forward Transconductance ^a	9 _{fs}	V _D	_S = 8 V, I _D	= 3 A	-	5.4	-	S
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynamic		•						•
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input Capacitance	C _{iss}		$V_{co} = 0$	1	-	2600	-	
Reverse Transfer Capacitance C_{rss} $f = 1.0 \text{ MHz}$ $ 3$ $-$ Effective Output Capacitance, Energy Related a $C_{o(er)}$ $V_{DS} = 0 \text{ V}$ to $480 \text{ V}, V_{GS} = 0 \text{ V}$ $ 98$ $-$ Effective Output Capacitance, Time Related b $C_{o(tr)}$ $V_{DS} = 0 \text{ V}$ to $480 \text{ V}, V_{GS} = 0 \text{ V}$ $ 346$ $-$ Total Gate Charge Q_g Q_{gs} $V_{GS} = 10 \text{ V}$ $I_D = 15 \text{ A}, V_{DS} = 480 \text{ V}$ $ 85$ 130 Gate-Drain Charge Q_{gd} $V_{GS} = 10 \text{ V}$ $I_D = 15 \text{ A}, V_{DS} = 480 \text{ V}$ $ 15$ $-$ Turn-On Delay Time $t_{d(on)}$ $V_{GS} = 10 \text{ V}$ $I_D = 15 \text{ A}, V_{DS} = 480 \text{ V}$ $ 19$ 40 Rise Time t_r $V_{QS} = 10 \text{ V}, R_g = 4.7 \Omega$ $ 63$ 95 $-$ Turn-Off Delay Time $t_d(off)$ $V_{GS} = 10 \text{ V}, R_g = 4.7 \Omega$ $ 63$ 95 $-$ Fall Time t_r T_g $f = 1 \text{ MHz}, open drain 0.63 \OmegaDrain-Source Body Diode CharacteristicsP^rP^r n junction diode 29APulsed Diode Forward CurrentI_SMOSFET symbol showing the integral reverse p - n junction diode 65-Diode Forward VoltageV_{SD}T_J = 25 °C, I_S = 15 \text{ A}, V_{GS} = 0 \text{ V} 1.3 \text{ V}Body Diode Reverse Recovery Timet_{rr}T_J = 25 °C, I_F = I_S = 15 \text{ A}, dI/dt = 100 A/\mus, V_R$	Output Capacitance					-	138	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Reverse Transfer Capacitance	C _{rss}		f = 1.0 MH	Ηz	-	3	-	
Effective Output Capacitance, Time Related b $C_{o(tr)}$ -346-Total Gate Charge Q_g Gate-Source Charge Q_{gd} Gate-Drain Charge Q_{gd} Tum-On Delay Time $t_{d(on)}$ Rise Time t_r Tum-Off Delay Time $t_{d(off)}$ Fall Time t_r Gate Input Resistance R_g f = 1 MHz, open drain-0.63-Optimular Source Body Diode CharacteristicsContinuous Source-Drain Diode Current I_S Num-Source Body Diode CharacteristicsContinuous Source-Drain Diode Current I_S Diode Forward Voltage V_{SD} Tug = 25 °C, I_S = 15 A, V_GS = 0 V-Tug = 25 °C, I_F = I_S = 15 A, dI/dt = 100 A/µs, V_R = 20 V-Tug = 25 °C, I_F = I_S = 15 A, dI/dt = 100 A/µs, V_R = 20 V-Tug = 25 °C, I_F = I_S = 15 A, dI/dt = 100 A/µs, V_R = 20 V-Tug = 25 °C, I_F = I_S = 15 A, dI/dt = 100 A/µs, V_R = 20 V-Tug = 25 °C, I_F = I_S = 15 A, dI/dt = 100 A/µs, V_R = 20 V-Tug = 25 °C, I_F = I_S = 15 A, dI/dt = 100 A/µs, V_R = 20 V-Tug = 25 °C, I_F = I_S = 15 A, dI/dt = 100 A/µs, V_R = 20 V-Tug = 25 °C, I_F = I_S = 15 A, dI/dt = 100 A/µs, V_R = 20 V-Tug = 25 °C, I_F = I_S = 15 A, dI/dt = 100 A/µs, V_R = 20 V-Tug = 25 °C, I_F = I_S = 15 A, dI/dt = 100 A/µs, V_R = 20 V-Tug = 25 °C, I_F = I_S = 15 A, dI/dt = 100 A/µs, V_R = 20 V-Tug = 25 °C, I_F = I_S = 15 A, dI/dt = 100 A/µs, V_R = 20 V-Tug = 25 °C,	Effective Output Capacitance, Energy Related ^a					-	98	-	pF
Gate-Source Charge Q_{gs} $V_{GS} = 10 \text{ V}$ $I_D = 15 \text{ A}, V_{DS} = 480 \text{ V}$ -15-nCGate-Drain Charge Q_{gd} Turn-On Delay Time $t_{d(on)}$ Rise Time t_r Turn-Off Delay Time $t_{d(off)}$ Fall Time t_r Fall Time t_f Gate Input Resistance R_g $r = 1 \text{ MHz}, open drain$ - 0.63 - 0.64 - 0.64 - 0.65 - 0.65 - 0.665 - 0.665 - 0.665 - 0.665 - 0.665 - 0.665 - 0.665 - 0.665 - 0.665 - 0.665 - 0.665 - 0.665 - <td>Effective Output Capacitance, Time Related ^b</td> <td>C_{o(tr)}</td> <td>$V_{\rm DS} = 0$ V</td> <td>7 to 480 V,</td> <td>V_{GS} = 0 V</td> <td>-</td> <td>346</td> <td>-</td> <td></td>	Effective Output Capacitance, Time Related ^b	C _{o(tr)}	$V_{\rm DS} = 0$ V	7 to 480 V,	V _{GS} = 0 V	-	346	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Total Gate Charge	Qq				-	85	130	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Charge	Q _{gs}	V _{GS} = 10 V	I _D = 15	A, V _{DS} = 480 V	-	15	-	nC
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Drain Charge	Q _{qd}				-	39	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-On Delay Time					-	19	40	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Rise Time			- 380 \/ I-	_ 15 A	-	32	65	
Fall Time t_f -3675Gate Input Resistance R_g $f = 1 \text{ MHz}$, open drain-0.63- Ω Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode Current I_S MOSFET symbol showing the integral reverse $p - n$ junction diode29APulsed Diode Forward Current I_{SM} $T_J = 25 ^{\circ}C$, $I_S = 15 \text{ A}$, $V_{GS} = 0 \text{ V}$ 1.3VBody Diode Reverse Recovery Time t_{rr} $T_J = 25 ^{\circ}C$, $I_F = I_S = 15 \text{ A}$, dl/dt = 100 A/µs, $V_R = 20 \text{ V}$ -71.5µC	Turn-Off Delay Time	t _{d(off)}	V _{DD} =	= 10 V, R _a	= 13 A, = 4.7 Ω	-	63	95	ns
Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode CurrentIsMOSFET symbol showing the integral reverse $p - n$ junction diode29APulsed Diode Forward CurrentIsmIsmTJ = 25 °C, Is = 15 A, Vgs = 0 V65-Diode Forward VoltageVspTJ = 25 °C, Is = 15 A, Vgs = 0 V1.3VBody Diode Reverse Recovery TimetrrTJ = 25 °C, IF = Is = 15 A, 	Fall Time			. 9		-	36	75	V/°(V/ μA μA Ω S nC nS Ω Λ
Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode CurrentIsMOSFET symbol showing the integral reverse p - n junction diode-29APulsed Diode Forward CurrentIsMIsM $T_J = 25 ^{\circ}C$, Is = 15 A, VGS = 0 V65ADiode Forward VoltageVSD $T_J = 25 ^{\circ}C$, Is = 15 A, VGS = 0 V1.3VBody Diode Reverse Recovery Time t_{rr} $T_J = 25 ^{\circ}C$, IF = IS = 15 A, dI/dt = 100 A/µs, VR = 20 V-715µC	Gate Input Resistance	R _q	f = 1	MHz, ope	n drain	-	0.63	-	Ω
Continuous Source-Drain Diode CurrentIsMOSFET symbol showing the integral reverse p - n junction diode-29APulsed Diode Forward CurrentIsMIsM $T_J = 25 \ ^{\circ}C$, Is = 15 A, VGS = 0 V65Diode Forward VoltageVsD $T_J = 25 \ ^{\circ}C$, Is = 15 A, VGS = 0 V1.3VBody Diode Reverse Recovery Time t_{rr} $T_J = 25 \ ^{\circ}C$, IF = IS = 15 A, dI/dt = 100 A/µs, VR = 20 V71.5µC	Drain-Source Body Diode Characteristic	÷	•						
Pulsed Diode Forward CurrentIsmIntegral reverse p - n junction diode65Diode Forward Voltage V_{SD} $T_J = 25 \ ^{\circ}C$, $I_S = 15 \ ^{\circ}A$, $V_{GS} = 0 \ ^{\circ}V$ 1.3 V Body Diode Reverse Recovery Time t_{rr} $T_J = 25 \ ^{\circ}C$, $I_F = I_S = 15 \ ^{\circ}A$, dl/dt = 100 A/µs, $V_R = 20 \ ^{\circ}V$ 402605nsDiode Reverse Recovery Charge Q_{rr} $T_J = 25 \ ^{\circ}C$, $I_F = I_S = 15 \ ^{\circ}A$, dl/dt = 100 A/µs, $V_R = 20 \ ^{\circ}V$ -715 μC	Continuous Source-Drain Diode Current	I _S	-	bol		-	-	29	
Body Diode Reverse Recovery Time t_{rr} $T_J = 25 \ ^\circ C$, $I_F = I_S = 15 \ A$, $dl/dt = 100 \ A/\mu s$, $V_R = 20 \ V$ $ 402$ 605 ns R_{rr} $T_J = 25 \ ^\circ C$, $I_F = I_S = 15 \ A$, $dl/dt = 100 \ A/\mu s$, $V_R = 20 \ V$ $ 7$ 15 μC	Pulsed Diode Forward Current	I _{SM}	integral revers			-	-	65	A
Body Diode Reverse Recovery Time t_{rr} $T_J = 25 \degree C, I_F = I_S = 15 \mbox{ A}, dl/dt = 100 \mbox{ A/}\mu s, V_R = 20 \mbox{ V}$ -402605nsT_J = 25 \degree C, I_F = I_S = 15 \mbox{ A}, dl/dt = 100 \mbox{ A/}\mu s, V_R = 20 \mbox{ V}-715 μC	Diode Forward Voltage	V _{SD}	T _J = 25 °0	C, I _S = 15 /	A, V _{GS} = 0 V	-	-	1.3	V
Body Diode Reverse Recovery Charge Q_{rr} $T_J = 25 \ ^{\circ}C, I_F = I_S = 15 \ A, dI/dt = 100 \ A/\mu s, V_R = 20 \ V$ -715 μC	Body Diode Reverse Recovery Time			-		-	402	605	ns
	, ,					-			μC
	Reverse Recovery Current	I _{RRM}	ai/at =	του A/μs,	$v_{\rm R} = 20 V$	-	32	65	A

Notes

a. $C_{oss(er)}$ is a fixed capacitance that gives the same energy as C_{oss} while $V_{\rm DS}$ is rising from 0 % to 80 % $V_{\rm DSS}.$

b. Coss(tr) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 % to 80 % VDSS.

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

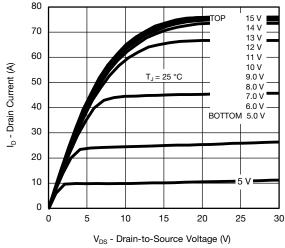
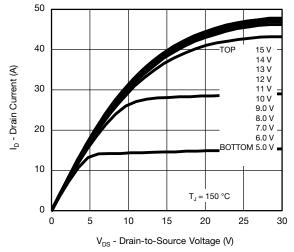



Fig. 1 - Typical Output Characteristics, T_C = 25 °C

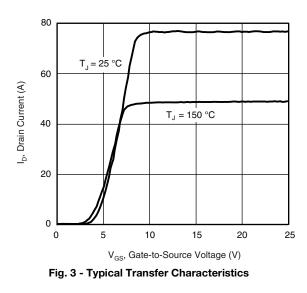


Fig. 4 - Normalized On-Resistance vs. Temperature

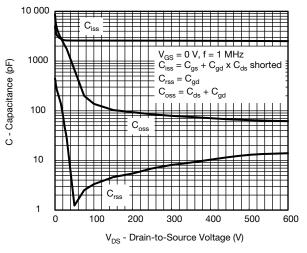
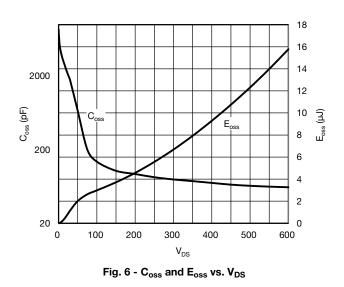
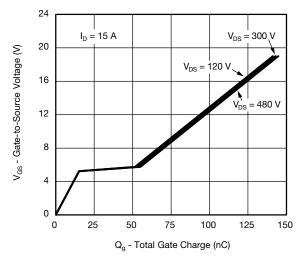



Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

S16-1084-Rev. I, 06-Jun-16


3

Document Number: 91454

For technical questions, contact: <u>hvm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Siliconix

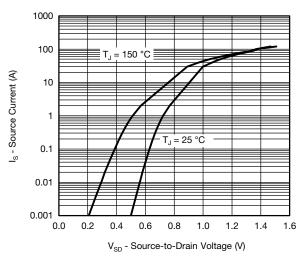
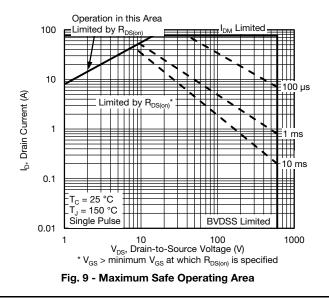
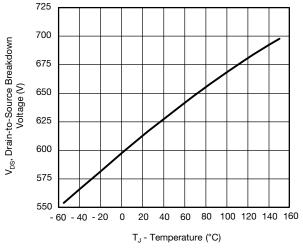



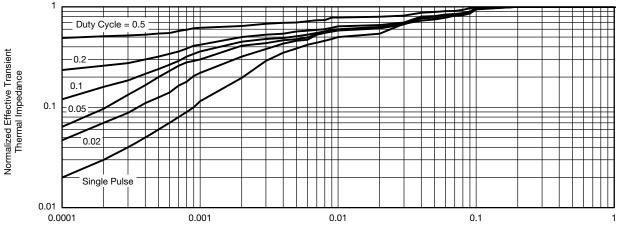
Fig. 8 - Typical Source-Drain Diode Forward Voltage

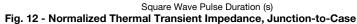
(3) 20.0 (3) 20.0 (5)

30.0

Fig. 10 - Maximum Drain Current vs. Case Temperature




Fig. 11 - Temperature vs. Drain-to-Source Voltage


S16-1084-Rev. I, 06-Jun-16

4

Vishay Siliconix

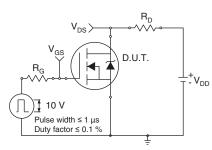


Fig. 13 - Switching Time Test Circuit

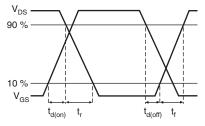


Fig. 14 - Switching Time Waveforms

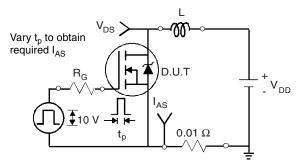


Fig. 15 - Unclamped Inductive Test Circuit

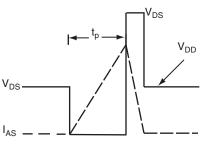


Fig. 16 - Unclamped Inductive Waveforms

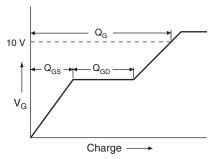
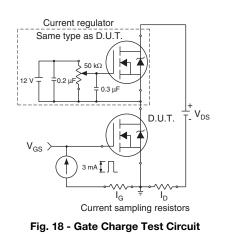
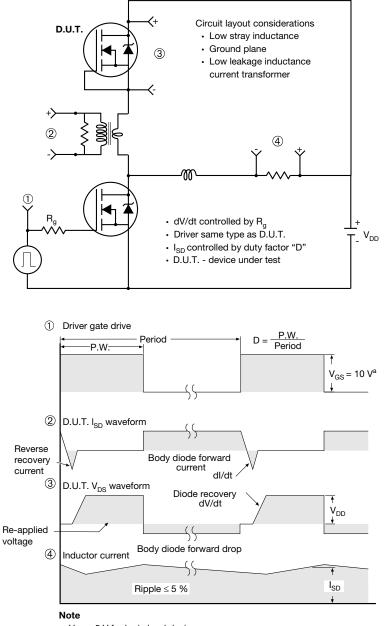



Fig. 17 - Basic Gate Charge Waveform


S16-1084-Rev. I, 06-Jun-16

5

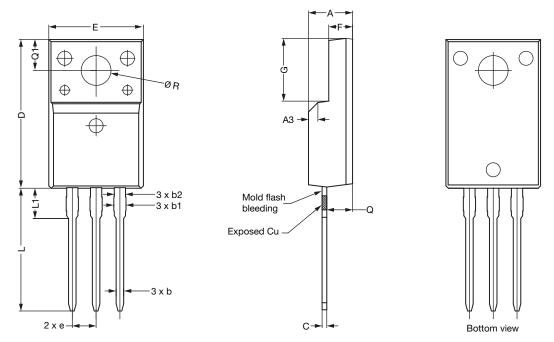
Document Number: 91454

Peak Diode Recovery dV/dt Test Circuit

a. $V_{GS} = 5 V$ for logic level devices

Fig. 19 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91454.


Document Number: 91454

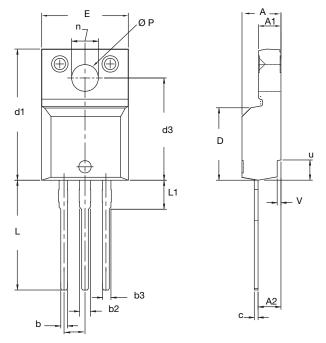
Vishay Siliconix

TO-220 FULLPAK (High Voltage)

OPTION 1: FACILITY CODE = 9

		MILLIMETERS	
DIM.	MIN.	NOM.	MAX.
A	4.60	4.70	4.80
b	0.70	0.80	0.91
b1	1.20	1.30	1.47
b2	1.10	1.20	1.30
С	0.45	0.50	0.63
D	15.80	15.87	15.97
е		2.54 BSC	
E	10.00	10.10	10.30
F	2.44	2.54	2.64
G	6.50	6.70	6.90
L	12.90	13.10	13.30
L1	3.13	3.23	3.33
Q	2.65	2.75	2.85
Q1	3.20	3.30	3.40
ØR	3.08	3.18	3.28

Notes


- 1. To be used only for process drawing
- 2. These dimensions apply to all TO-220 FULLPAK leadframe versions 3 leads
- 3. All critical dimensions should C meet $C_{pk} > 1.33$
- 4. All dimensions include burrs and plating thickness
- 5. No chipping or package damage
 6. Facility code will be the 1st character located at the 2nd row of the unit marking

1

Vishay Siliconix

OPTION 2: FACILITY CODE = Y

	MILLIN	IETERS	INCHES		
DIM.	MIN.	MAX.	MIN.	MAX.	
А	4.570	4.830	0.180	0.190	
A1	2.570	2.830	0.101	0.111	
A2	2.510	2.850	0.099	0.112	
b	0.622	0.890	0.024	0.035	
b2	1.229	1.400	0.048	0.055	
b3	1.229	1.400	0.048	0.055	
С	0.440	0.629	0.017	0.025	
D	8.650	9.800	0.341	0.386	
d1	15.88	16.120	0.622	0.635	
d3	12.300	12.920	0.484	0.509	
E	10.360	10.630	0.408	0.419	
е	2.54	BSC	0.100) BSC	
L	13.200	13.730	0.520	0.541	
L1	3.100	3.500	0.122	0.138	
n	6.050	6.150	0.238	0.242	
ØP	3.050	3.450	0.120	0.136	
u	2.400	2.500	0.094	0.098	
V	0.400	0.500	0.016	0.020	

DWG: 5972

Notes

1. To be used only for process drawing

2. These dimensions apply to all TO-220 FULLPAK leadframe versions 3 leads

3. All critical dimensions should C meet $C_{pk} > 1.33$

4. All dimensions include burrs and plating thickness

5. No chipping or package damage
6. Facility code will be the 1st character located at the 2nd row of the unit marking

2

Document Number: 91359

For technical questions, contact: hvmos.techsupport@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2024 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2024