RoHS

COMPLIANT

HALOGEN

FREE

Vishay Semiconductors

High Performance Schottky Rectifier, 1.5 A

- Extremely low forward voltage drop
- Guard ring for enhanced ruggedness and long term reliability
- Surface mountable
- Compact size
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Switching power supplies
- Meter protection
- · Reverse protection for power input to PC board circuits
- Battery isolation and charging
- Low threshold voltage diode
- Freewheeling or by-pass diode
- · Low voltage clamp

DESCRIPTION

The VS-15MQ040-M3 Schottky rectifier is designed to be used for low power applications where a reverse voltage of 40 V is encountered and surface mountable is required.

MAJOR RATINGS AND CHARACTERISTICS					
SYMBOL	CHARACTERISTICS	VALUES	UNITS		
I _{F(AV)}	Rectangular waveform	1.5	А		
V _{RRM}		40	V		
I _{FSM}	t _p = 5 μs sine	330	А		
V _F	2 A _{pk} , T _J = 125 °C	0.43	V		
TJ	Range	-40 to +150	°C		

VOLTAGE RATINGS				
PARAMETER	SYMBOL	VS-15MQ040-M3	UNITS	
Maximum DC reverse voltage	V _R	40	V	
Maximum working peak reverse voltage	V _{RWM}	49	v	

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum average forward current	I _{F(AV)}	50 % duty cycle at $T_L = 105$ °C, rectangular waveform On PC board 9 mm ² island (0.013 mm thick copper pad area)		2.1	Α
See fig. 4		50 % duty cycle at T_L = 113 °C, rectangular waveform On PC board 9 mm ² island (0.013 mm thick copper pad area)		1.5	
Maximum peak one cycle	I _{FSM}	5 µs sine or 3 µs rect. pulse	Following any rated	330	_
non-repetitive surge current See fig. 6		10 ms sine or 6 ms rect. pulse	load condition and with rated V _{RRM} applied	140	A
Non-repetitive avalanche energy	E _{AS}	T _J = 25 °C, I _{AS} = 1 A, L = 12 mH		6.0	mJ
Repetitive avalanche current	I _{AR}	Current decaying linearly to zero in 1 μ s Frequency limited by T _J maximum V _A = 1.5 x V _R typical		1.0	А

Revision: 12-Apr-2018

Document Number: 93366

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

1

SMA (DO-214AC)

I_{F(AV)}

V_F at I_F

T_J max.

Package

Circuit configuration

 V_R

I_{RM}

E_{AS}

PRIMARY CHARACTERISTICS

1.5 A

40 V

0.34 V

20 mA at 125 °C

6.0 mJ

150 °C

SMA (DO-214AC)

Single

www.vishay.com

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum forward voltage drop See fig. 1	V _{FM} ⁽¹⁾	1.5 A	T ₁ = 25 °C	0.43	V
		2 A	1j=25 0	0.49	
		1.5 A	T.I = 125 °C	0.34	
		2 A		0.43	
Maximum reverse leakage current See fig. 2	I _{RM}	T _J = 25 °C	$V_{\rm B}$ = Rated $V_{\rm B}$	0.5	mA
		T _J = 125 °C	v _R = naleu v _R	20	
Threshold voltage	V _{F(TO)}	$T_{\rm J} = T_{\rm J}$ maximum		0.26	V
Forward slope resistance	r _t			64.6	mΩ
Typical junction capacitance	C _T	$V_R = 10 V_{DC}$, $T_J = 25 $ °C, test signal = 1 MHz		134	pF
Typical series inductance	L _S	Measured lead to lead 5 mm from package body		2.0	nH
Maximum voltage rate of change	dV/dt	Rated V _R		10 000	V/µs

Note

⁽¹⁾ Pulse width = 300 μ s, duty cycle = 2 %

THERMAL - MECHANICAL SPECIFICATIONS				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction and storage temperature range	T _J ⁽¹⁾ , T _{Stg}		-40 to +150	°C
Maximum thermal resistance, junction to ambient	R _{thJA}	DC operation	80	°C/W
Approximate weight			0.07	g
			0.002	oz.
Marking device		Case style SMA (DO-214AC)	Х	F

Note

 $\frac{dP_{tot}}{dT_J} < \frac{1}{R_{thJA}} \quad \text{thermal runaway condition for a diode on its own heatsink}$ (1)

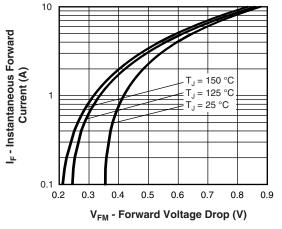


Fig. 1 - Maximum Forward Voltage Drop Characteristics

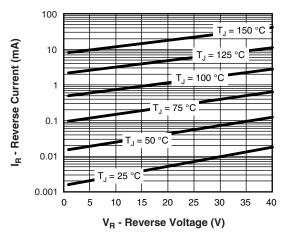


Fig. 2 - Typical Peak Reverse Current vs. Reverse Voltage

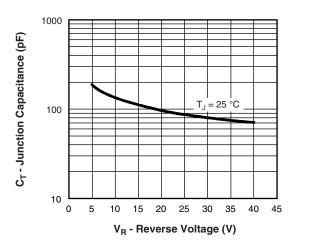
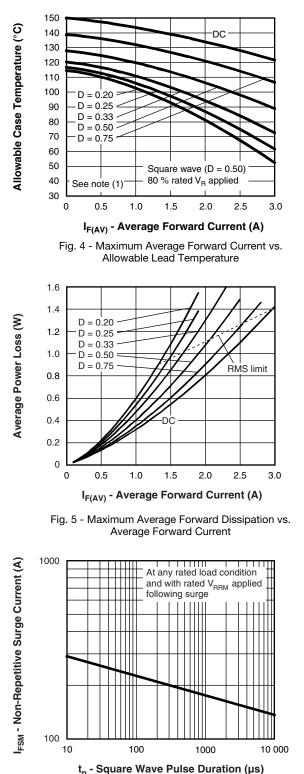


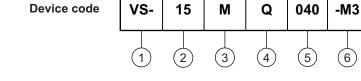
Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

⁽¹⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$;

 $\begin{array}{l} \mathsf{Pd} = \mathsf{forward} \ \mathsf{power} \ \mathsf{loss} = \mathsf{I}_{\mathsf{F}(\mathsf{AV})} \times \mathsf{V}_{\mathsf{FM}} \ \mathsf{at} \ (\mathsf{I}_{\mathsf{F}(\mathsf{AV})}/\mathsf{D}) \ (\mathsf{see} \ \mathsf{fig.} \ \mathsf{6}); \\ \mathsf{Pd}_{\mathsf{REV}} = \mathsf{inverse} \ \mathsf{power} \ \mathsf{loss} = \mathsf{V}_{\mathsf{R1}} \times \mathsf{I}_{\mathsf{R}} \ (\mathsf{1} - \mathsf{D}); \ \mathsf{I}_{\mathsf{R}} \ \mathsf{at} \ \mathsf{V}_{\mathsf{R1}} = \mathsf{80} \ \% \ \mathsf{rated} \ \mathsf{V}_{\mathsf{R}} \\ \end{array}$

Vishay Semiconductors




Fig. 6 - Maximum Peak Surge Forward Current vs. Pulse Duration

Revision: 12-Apr-2018

3

Document Number: 93366

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

SHA

www.vishay.com

ORDERING INFORMATION TABLE

- Vishay Semiconductors product 1
 - Current rating _ M = SMA _
- 2 3 4 5 Q = Schottky "Q" series -
 - Voltage rating (040 = 40 V) -
- 6 Environmental digit: -

-M3 = halogen-free, RoHS-compliant and terminations lead (Pb)-free

ORDERING INFORMATION (Example)						
PREFERRED P/N	PREFERRED PACKAGE CODE	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION			
VS-15MQ040-M3/5AT	5AT	7500	13" diameter plastic tape and reel			

LINKS TO RELATED DOCUMENTS		
Dimensions	www.vishay.com/doc?95400	
Part marking information	www.vishay.com/doc?95403	
Packaging information	www.vishay.com/doc?95404	

Vishay Semiconductors

Outline Dimensions

Vishay Semiconductors

SMA

DIMENSIONS in inches (millimeters)

DO-214AC (SMA)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2024 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2024