Vishay Semiconductors

FRED Pt[®], **Ultrafast Soft Recovery Diode Module, 400 A**

PRIMARY CHARACTE	RISTICS
I _{F(AV)}	400 A
V _R	600 V
Q _{rr} (typical)	5100 nC
t _{rr}	215 ns
Туре	Modules - diode, FRED Pt®
Package	TO-244
Circuit configuration	Two diodes common cathode

FEATURES

- Ultrafast recovery
- · Designed for industrial level
- UL approved file E222165
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

BENEFITS

- Reduced RFI and EMI
- Higher frequency operation
- Reduced snubbing
- · Reduced parts count

DESCRIPTION / APPLICATIONS

FRED Pt® diodes are optimized to reduce losses and EMI/RFI in high frequency power conditioning systems. The softness of the recovery eliminates the need for a snubber in most applications. These devices are ideally suited for HF welding, power converters and other applications where switching losses are significant portion of the total losses.

ABSOLUTE MAXIMUM RATI	NGS			
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS
Cathode to anode voltage	V _R		600	V
		T _C = 25 °C	572	
Continuous forward current per diode	I _{F(DC)}	T _C = 85 °C	397	<u>,</u>
		T _C = 137 °C	200	A
Single pulse forward current per diode	I _{FSM}	T _C = 25 °C	3330	
Maximum neuror discinction	Р	T _C = 25 °C	789	W
Maximum power dissipation	PD	T _C = 137 °C	200	vv
Operating junction and storage temperatures	T _J , T _{Stg}		-40 to +175	°C

ELECTRICAL SPECIFICATIO	NS PER	LEG ($T_J = 25 \ ^{\circ}C$ unless otherwise spe	cified)			
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Breakdown voltage	V _{BR}	I _R = 100 μA	600	-	-	
		I _F = 200 A	-	1.0	1.2	
Forward valtage	V	I _F = 400 A	-	1.12	1.37	V
Forward voltage	V _{FM}	I _F = 200 A, T _J = 175 °C	-	0.83	1.0	
		I _F = 400 A, T _J = 175 °C	-	0.98	1.21	
Reverse leakage current	I _{RM}	$T_J = 175 \text{ °C}, V_R = V_R \text{ rated}$	-	0.3	3.0	mA
Series inductance	L _S	From top of terminal hole to mounting plane	-	5	-	nH

Revision: 24-Jul-2023 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

RoHS

www.vishay.com

Vishay Semiconductors

DYNAMIC RECOVER	Y CHARAC	TERISTICS (T _J = 25 °C	C unless otherwise spe	ecified)			
PARAMETER	SYMBOL	TEST CO	NDITIONS	MIN.	TYP.	MAX.	UNITS
Reverse recovery time	+	T _J = 25 °C		-	215	-	20
Reverse recovery time	t _{rr}	T _J = 150 °C		-	432	-	ns
Peak recovery current	1	T _J = 25 °C	I _F = 50 A, dI _F /dt = 500 A/μs,	-	48	-	٨
Feak recovery current	IRRM	T _J = 150 °C	$V_{\rm B} = 200 \text{ V}$	-	70	-	A
Reverse recovery charge	0	T _J = 25 °C		-	5100	-	nC
Reverse recovery charge	Q _{rr}	T _J = 150 °C		-	15 100	-	no

THERMAL - MECH	IANICAL SPEC	IFICATIONS				
PARAMETER		SYMBOL	MIN.	TYP.	MAX.	UNITS
Thermal resistance,	per leg	R _{thJC}	-	-	0.19	
junction to case	unction to case per module		-	-	0.095	°C/W
Thermal resistance, case	to heatsink	R _{thCS}	-	0.10	-	
Weight			-	68	-	g
weight	Weight		-	2.4	-	oz.
Mounting torque			30 (3.4)	-	40 (4.6)	
Mounting torque center h	ole		12 (1.4)	-	18 (2.1)	lbf · in (N · m)
Terminal torque			30 (3.4)	-	40 (4.6)	
Vertical pull			-	-	80	lbf∙in
2" lever pull			-	-	35	חויוטו
Case style				TO	-244	•

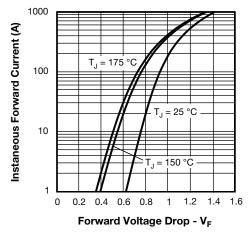


Fig. 1 - Typical Forward Voltage Drop vs. Instantaneous Forward Current (Per Leg)

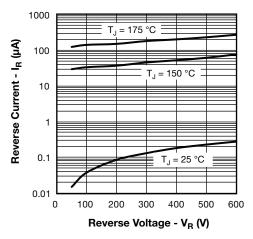


Fig. 2 - Typical Reverse Current vs. Reverse Voltage (Per Leg)

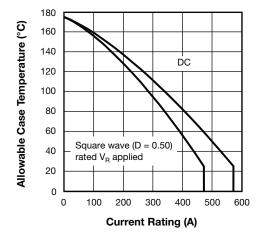


Fig. 3 - Maximum Current Rating Capability (Per Leg)

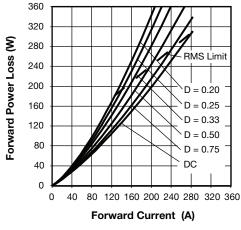


Fig. 4 - Forward Power Loss Characteristics

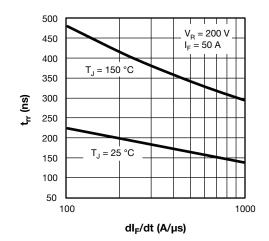


Fig. 5 - Typical Reverse Recovery Time vs. dl_F/dt

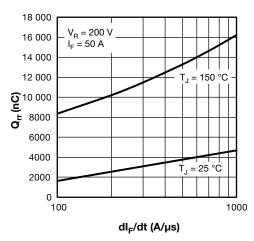


Fig. 6 - Typical Reverse Recovery Charge vs. dl_F/dt

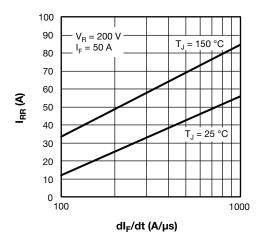


Fig. 7 - Typical Reverse Recovery Current vs. dl_F/dt

Vishay Semiconductors

Vishay Semiconductors

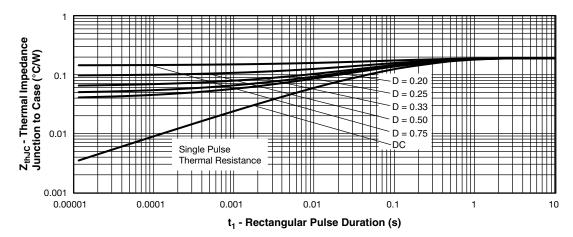


Fig. 8 - Maximum Thermal Impedance Z_{thJC} Characteristics (Per Leg)

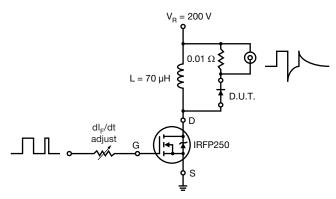
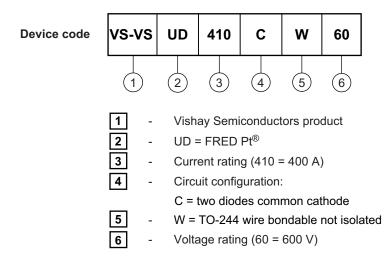
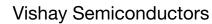



Fig. 9 - Reverse Recovery Parameter Test Circuit

ORDERING INFORMATION TABLE

www.vishay.com



 Revision: 24-Jul-2023
 A
 Document Number: 93622

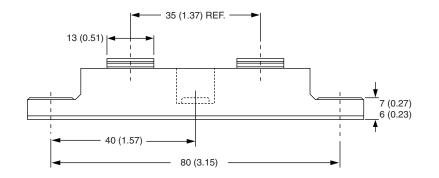
 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
 DiodesEurope@vishay.com

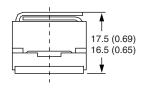
 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

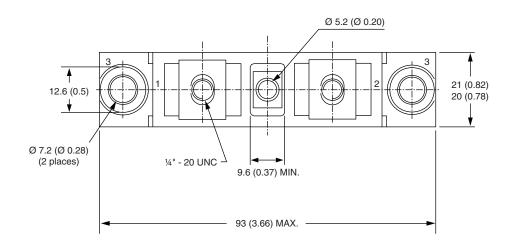
CIRCUIT CONFIGURATION

CIRCUIT CONFIGURATION		
CIRCUIT	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING
Two diodes common cathode	С	Lug Lug terminal terminal anode 1 anode 2 Base common cathode

UMENTS
www.vishay.com/doc?95021






Vishay Semiconductors

TO-244

DIMENSIONS in millimeters (inches)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2025 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2025

1