Vishay Semiconductors

Hyperfast Rectifier, 1 A FRED Pt®

SMA (DO-214AC)

LINKS TO ADDITIONAL RESOURCES

30	
3D Models	E

PRIMARY CHARACTERISTICS					
I _{F(AV)}	1 A				
V _R	1200 V				
V _F at I _F	1.10 V				
t _{rr}	75 ns				
T _J max.	175 °C				
Package	SMA (DO-214AC)				
Circuit configuration	Single				

FEATURES

- Hyperfast recovery time, reduced Q_{rr}, and soft recovery
- 175 °C maximum operating junction temperature
- Specified for output and snubber operation
- Low forward voltage drop
- Low leakage current
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- Meets JESD 201 class 2 whisker test
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION / APPLICATIONS

State of the art hyperfast recovery rectifiers specifically designed with optimized performance of forward voltage drop and hyperfast recovery time.

The planar structure and the platinum doped life time control guarantee the best overall performance, ruggedness, and reliability characteristics.

These devices are intended for use as clamp, snubber and freewheeling diode in a flyback aux power supplies, bootstrap and desaturate for HV MOSFET and IGBT driver, high frequency rectifiers in a cuk and sepic circuit for LED lighting.

Their extremely optimized stored charge and low recovery current minimize the switching losses and reduce power dissipation in the switching element.

MECHANICAL DATA

Case: SMA (DO-214AC)

Molding compound meets UL 94 V-0 flammability rating **Terminals:** matte tin plated leads, solderable per J-STD-002

Polarity: color band denotes cathode end

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Peak repetitive reverse voltage	V _{RRM}		1200	V		
Average rectified forward current	I _{F(AV)}	T _{Sp} = 144 °C, D = 0.5	1	٨		
Non-repetitive peak surge current	I _{FSM}	T _J = 25 °C, 8.3 ms sine pulse	21	A		
Operating junction and storage temperatures	T _J , T _{Stg}		-55 to +175	°C		

ELECTRICAL SPECIFICATIONS ($T_J = 25 \text{ °C}$ unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Breakdown voltage, blocking voltage	V_{BR}, V_{R}	I _R = 100 μA	1200	-	-		
		I _F = 1 A	-	1.35	1.80	v	
Forward voltage, per diode	V _F	I _F = 1 A, T _J = 125 °C	-	1.17	1.55		
		I _F = 1 A, T _J = 150 °C	-	1.10	1.44		
Deverse leakage everent, per diede		$V_{R} = V_{R}$ rated	-	-	5		
Reverse leakage current, per diode	I _R	$T_J = 150 \text{ °C}, V_R = V_R \text{ rated}$	-	-	50	μA	
Junction capacitance	CT	V _R = 1200 V	-	3.5	-	pF	

Revision: 12-Jun-2023

1

Document Number: 96673

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

COMPLIANT

HALOGEN

FREE

www.vishay.com

Vishay Semiconductors

DYNAMIC RECOVERY CHARACTERISTICS (T _J = 25 °C unless otherwise specified)									
PARAMETER	SYMBOL	TEST CONDITIONS MIN. TYP. I				MAX.	UNITS		
		$I_F = 0.5 \text{ A}, I_R = 1 \text{ A}$	A, I _{rr} = 0.25 A	-	-	75			
Reverse recovery time	t _{rr}	T _J = 25 °C		-	99	-	ns		
		T _J = 125 °C		-	137	-			
Peak recovery current	1	T _J = 25 °C	$I_{\rm F} = 1 {\rm A},$	-	3.5	-	^		
Feak recovery current	I _{RRM}	IRRM	T _J = 125 °C	$dI_F/dt = 200 \text{ A}/\mu \text{s},$ $V_R = 800 \text{ V}$	-	4.5	-	A	
Poverse recovery charge	Q _{rr}	$T_J = 2$	0	T _J = 25 °C		-	150	-	nC
Reverse recovery charge		T _J = 125 °C		-	286	-	nc		

THERMAL - MECHANICAL SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Maximum junction and storage temperature range	T _J , T _{Stg}		-55	-	175	°C	
Thermal resistance, junction to mount	R _{thJM} ⁽¹⁾	Device mounted on PCB with 2 x 3.5 mm soldering lands	-	15	18	°C/W	
Thermal resistance, junction to ambient	R _{thJA}	Device mounted on PCB with recommended pad size	-	110	-	°C/W	
Approximate weight				0.07		g	
Marking device		Case style SMA (DO-214AC)		11	112		

Note

⁽¹⁾ Thermal resistance junction to mount follows JEDEC[®] 51-14 transient dual interface test method (TDIM)

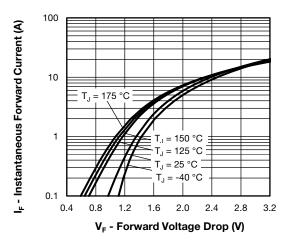


Fig. 1 - Typical Forward Voltage Drop Characteristics

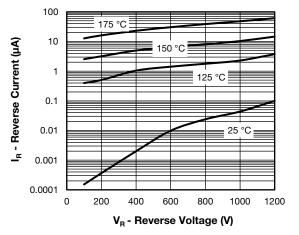


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

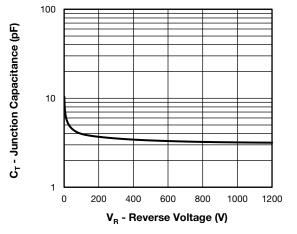


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

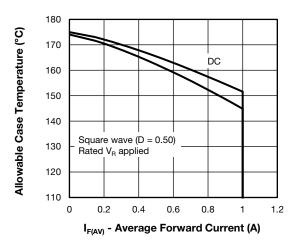


Fig. 4 - Maximum Allowable Case Temperature vs. Average Forward Current

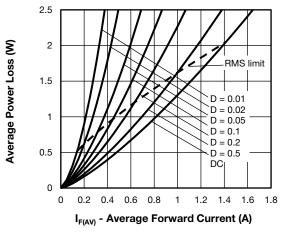


Fig. 5 - Forward Power Loss Characteristics

- ⁽¹⁾ Formula used: $T_C = T_J (Pd + Pd_{REV}) \times R_{thJC}$;
- $\begin{array}{l} \mathsf{Pd} = \mathsf{forward} \ \mathsf{power} \ \mathsf{loss} = \mathsf{I}_{\mathsf{F}(\mathsf{AV})} \ x \ \mathsf{V}_{\mathsf{FM}} \ at \ (\mathsf{I}_{\mathsf{F}(\mathsf{AV})}/\mathsf{D}) \ (\mathsf{see} \ \mathsf{fig.} \ \mathsf{5}); \\ \mathsf{Pd}_{\mathsf{REV}} = \mathsf{inverse} \ \mathsf{power} \ \mathsf{loss} = \mathsf{V}_{\mathsf{R1}} \ x \ \mathsf{I}_{\mathsf{R}} \ (1 \mathsf{D}); \ \mathsf{I}_{\mathsf{R}} \ at \ \mathsf{V}_{\mathsf{R1}} = \mathsf{rated} \ \mathsf{V}_{\mathsf{R}} \end{array}$

Revision: 12-Jun-2023

VS-E7MH0112-M3

Vishay Semiconductors

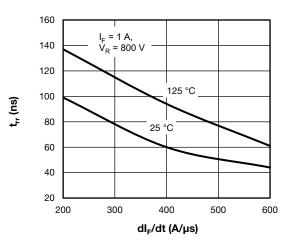


Fig. 6 - Typical Reverse Recovery Time vs. dl_F/dt

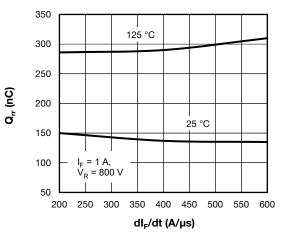
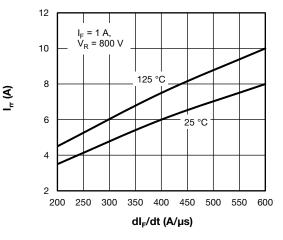
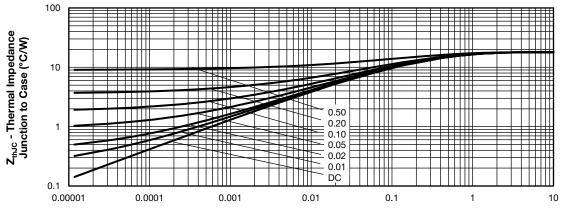


Fig. 7 - Typical Stored Charge vs. dl_F/dt




Fig. 8 - I_{rr} (A) vs. dI_F/dt

3 @viel Document Number: 96673

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

VS-E7MH0112-M3

Vishay Semiconductors

t₁ - Rectangular Pulse Duration (s)

Fig. 9 - Transient Thermal Impedance, Junction to Case

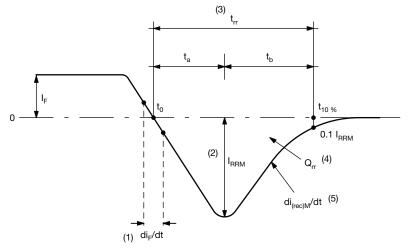


Fig. 10 - Reverse Recovery Waveform and Definitions

Notes

⁽¹⁾ di_F/dt - rate of change of current through zero crossing

www.vishay.com

- $^{(2)}\ \ I_{RRM}$ peak reverse recovery current
- $^{(3)}$ t_{rr} reverse recovery time measured from t₀, crossing point of negative going I_F, to point t_{10%}, 0.1 I_{RRM}
- $^{(4)}~Q_{rr}$ area under curve defined by t_0 and $t_{10\ \%}$

$$Q_{rr} = \int_{t_0} I(t)dt$$

 $^{(5)}$ di_(rec)M/dt - peak rate of change of current during t_b portion of t_{rr}

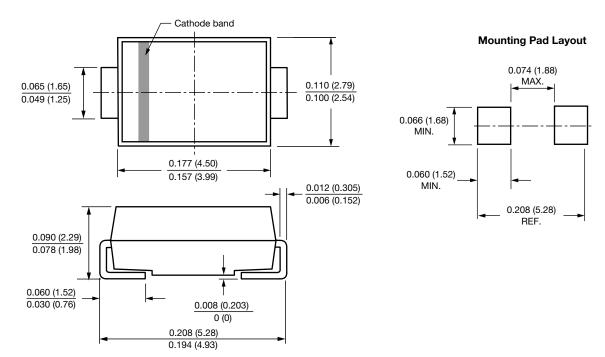
Vishay Semiconductors

ORDERING INFORMATION TABLE

Device code	VS-	E	7	М	н	01	12	-M3
	1	2	3	4	5	6	7	8
		- Circ	-	niconduo iguration liode		oduct		
	H	- 7 =	•	generatio	on 7			
	5		cess typ hyperfa	oe, ist reco∖	very			
	6	- Cur	rent rati	ng (01 =	= 1 A)			
	7	- Vol	age coo	de (12 =	1200 V)		
	8	- M3	= halog	en-free,	RoHS-	complia	nt, and	termina

ORDERING INFORMATION (Example)						
PREFERRED P/N	QUANTITY PER REEL	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION			
VS-E7MH0112-M3/I	7500	7500	13"diameter plastic tape and reel			

LINKS TO RELATED DOCUMENTS					
Dimensions	www.vishay.com/doc?95400				
Part marking information	www.vishay.com/doc?95472				
Packaging information	www.vishay.com/doc?95404				
SPICE model	www.vishay.com/doc?97060				


Outline Dimensions

Vishay Semiconductors

SMA

DIMENSIONS in inches (millimeters)

DO-214AC (SMA)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2024 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2024