
Vishay Semiconductors

650 V Gen 3 Power SiC Merged PIN Schottky Diode, 20 A

www.vishay.com

D²PAK 2L (TO-263AB 2L)

LINKS TO ADDITIONAL RESOURCES

SHA

PRIMARY CHARACTERISTICS								
I _{F(AV)} 20 A								
V _R	650 V							
V _F at I _F at 25 °C, typ.	1.3 V							
T _J max.	175 °C							
I _R at V _R at 175 °C	9 µA							
Q _C (V _R = 400 V)	53 nC							
Package	D ² PAK 2L (TO-263AB 2L)							
Circuit configuration	Single							

FEATURES

- Majority carrier diode using Schottky technology on SiC wide band gap material
- Improved V_F and efficiency by thin wafer **ROHS** compliant
- Positive V_F temperature coefficient for easy HALOGEN paralleling
- Virtually no recovery tail and no switching losses
- Temperature invariant switching behavior
- 175 °C maximum operating junction temperature
- Meets MSL level 1, per J-STD-020, LF maximum peak of 245 °C
- MPS structure for high ruggedness to forward current surge events
- Meets JESD 201 class 1A whisker test
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DESCRIPTION / APPLICATIONS

Wide band gap SiC based 650 V Schottky diode, designed for high performance and ruggedness.

Optimum choice for high speed hard switching and efficient operation over a wide temperature range, it is also recommended for all applications suffering from Silicon ultrafast recovery behavior.

Typical applications include AC/DC PFC and DC/DC ultra high frequency output rectification in FBPS and LLC converters.

MECHANICAL DATA

Case: D²PAK 2L (TO-263AB 2L)

Molding compound meets UL 94 V-0 flammability rating Base P/N-M3 - halogen-free, RoHS-compliant

Terminals: matte tin plated leads, solderable per J-STD-002 and JESD 22-B102

MAXIMUM RATINGS ($T_A = 25 \text{ °C}$ unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Peak repetitive reverse voltage	V _{RRM}		650	V			
Continuous forward current	$I_{\rm F}^{(1)}$ $T_{\rm C} = 123 ^{\circ}{\rm C} ({\rm DC})$		20	А			
Continuous forward current	I _F ⁽²⁾	T _C = 136 °C (DC)	20	А			
DC blocking voltage	V _{DC}		650	V			
Repetitive peak forward current	I _{FRM}	I_{FRM} T _C = 25 °C, f = 50 Hz, square wave, DC = 25 %					
Non-repetitive peak forward surge current	1	$T_C = 25 \text{ °C}, t_p = 10 \text{ ms}, \text{ half sine wave}$	110 A				
Non-repetitive peak forward surge current	IFSM	T_{C} = 110 °C, t_{p} = 10 ms, half sine wave	104	7			
	P _{tot} ⁽¹⁾	T _C = 25 °C	93	w			
Power dissipation	Ptot (1)	T _C = 110 °C	41				
Power dissipation	P _{tot} ⁽²⁾	T _C = 25 °C	125	w			
	Ptot (=)	T _C = 110 °C	54				
124	∫i ² dt	T _C = 25 °C	60.5	• 2			
l ² t value	Jidt	T _C = 110 °C	54	A ² s			
Operating junction and storage temperatures	T _J ⁽²⁾ , T _{Stg}		-55 to +175	°C			

Notes

 $^{(1)}\,$ Based on maximum R_{th}

⁽²⁾ Based on typical R_{th}

⁽³⁾ The heat generated must be less than the thermal conductivity from junction-to-ambient: $dP_D/dT_J < 1/R_{\theta JA}$

Revision: 10-Apr-2024

1

www.vishay.com

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS ($T_J = 25 \text{ °C}$ unless otherwise specified)								
PARAMETER	MIN.	TYP.	MAX.	UNITS				
		I _F = 20 A	-	1.3	1.5	v		
Forward voltage	V _F	I _F = 20 A, T _J = 150 °C	-	1.5	1.85			
		I _F = 20 A, T _J = 175 °C	-	1.60	-			
	I _R	$V_{R} = V_{R}$ rated	-	1.3	100			
Reverse leakage current		$V_{R} = V_{R}$ rated, $T_{J} = 150 \text{ °C}$	-	5.5	250			
		V _R = V _R rated, T _J = 175 °C	-	9	-			
Total capacitance	С	V _R = 1 V, f = 1 MHz	-	845	-	рF		
	0	V _R = 400 V, f = 1 MHz	-	82	-	- pr		
Total capacitive charge	Q _C	V _R = 400 V, f = 1 MHz	-	53	-	nC		

THERMAL - MECHANICAL SPECIFICATIONS (T _A = 25 °C unless otherwise specified)								
PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UN								
Thermal resistance, junction to case	R _{thJC}		-	1.2	1.6	°C/W		
Marking device	3C20ET07S							

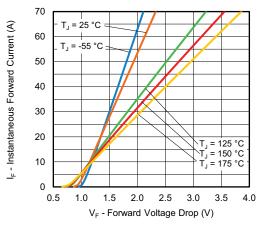


Fig. 1 - Typical Forward Voltage Drop Characteristics

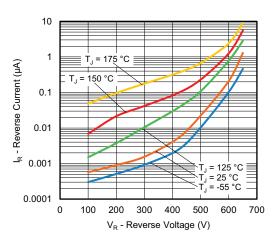


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

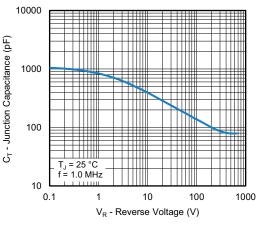
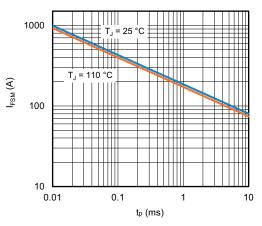
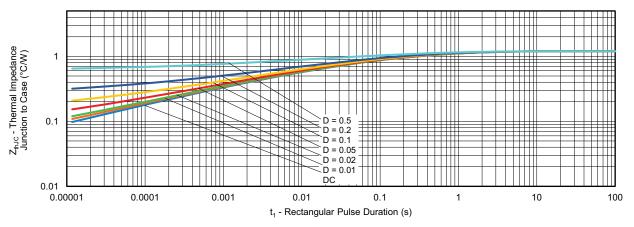
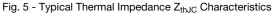


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage




Fig. 4 - Non-Repetitive Peak Forward Surge Current vs. Pulse Duration (Square Wave)


 Revision: 10-Apr-2024
 2
 Document Number: 96965

 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAmericas@vishay.com, <a href="DiodesAmericas@vishay.com"/DiodesAmericas@vishay.com"/DiodesAmericas@vishay.com"/DiodesAmericas@vishay.com, <a href="DiodesAmericas@vishay.com"/DiodesAmericas@vishay.c

Vishay Semiconductors

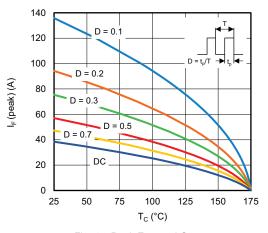


Fig. 6 - Peak Forward Current vs. Maximum Allowable Case Temperature

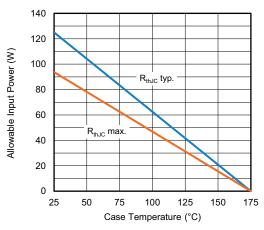


Fig. 7 - Forward Power Loss Characteristics

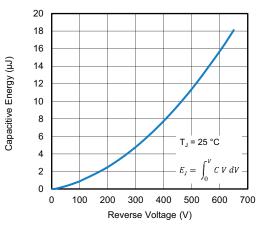


Fig. 8 - Typical Capacitive Energy vs. Reverse Voltage

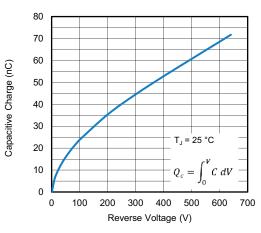
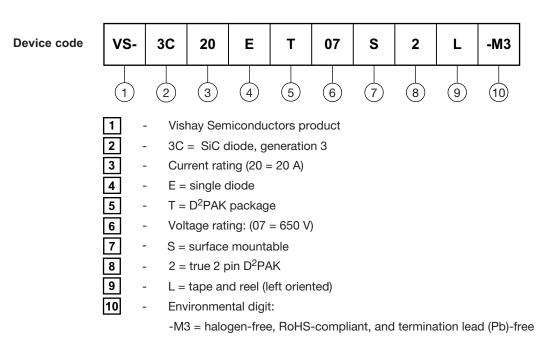


Fig. 9 - Typical Capacitive Charge vs. Reverse Voltage

Revision: 10-Apr-2024 For technical questions w 3

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

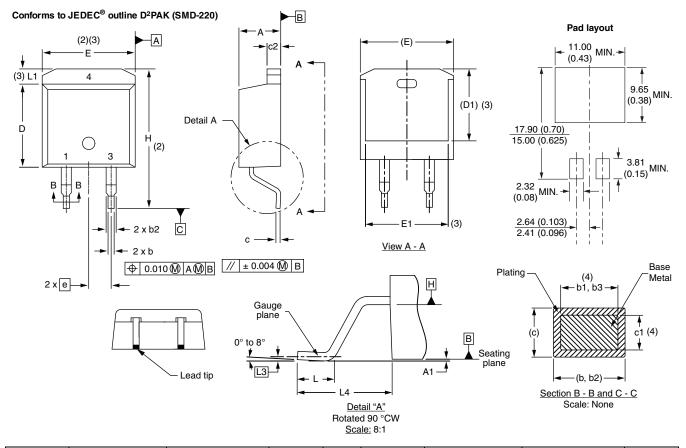


ORDERING INFORMATION TABLE

www.vishay.com

'ISHA

ORDERING INFORMATION							
PREFERRED P/N	BASE QUANTITY	PACKAGING DESCRIPTION					
VS-3C20ET07S2L-M3	800 per reel	13" diameter reel					


LINKS TO RELATED DOCUMENTS	
Dimensions	www.vishay.com/doc?96683
Part marking information	www.vishay.com/doc?96693
Packaging information	www.vishay.com/doc?95032

Vishay Semiconductors

D²PAK 2L (TO-263AB 2L)

DIMENSIONS in millimeters and inches

SYMBOL	MILLIM	LLIMETERS INCHES	NOTES	S SYMBOL		MILLIMETERS		INCHES		NOTES		
STNDUL	MIN.	MAX.	MIN.	MAX.	NOTES	NOTES	STWDUL	MIN.	MAX.	MIN.	MAX.	NOTES
А	4.06	4.83	0.160	0.190			D1	6.86	8.00	0.270	0.315	3
A1	0.00	0.254	0.000	0.010			E	9.65	10.67	0.380	0.420	2, 3
b	0.51	0.99	0.020	0.039			E1	7.90	8.80	0.311	0.346	3
b1	0.51	0.89	0.020	0.035	4		е	2.54	BSC	0.100) BSC	
b2	1.14	1.78	0.045	0.070			Н	14.61	15.88	0.575	0.625	
b3	1.14	1.73	0.045	0.068	4		L	1.78	2.79	0.070	0.110	
С	0.38	0.74	0.015	0.029			L1	-	1.65	-	0.066	3
c1	0.38	0.58	0.015	0.023	4		L3 0.25 BSC		0.25 BSC		BSC	
c2	1.14	1.65	0.045	0.065			L4	4.78	5.28	0.188	0.208	
D	8.51	9.65	0.335	0.380	2							

Notes

⁽¹⁾ Dimensioning and tolerancing per ASME Y14.5 M-1994

(2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
(3) Thermal and contain antional within dimension E 1.1, D1 and E1.

⁽³⁾ Thermal pad contour optional within dimension E, L1, D1 and E1

⁽⁴⁾ Dimension b1 and c1 apply to base metal only

⁽⁵⁾ Datum A and B to be determined at datum plane H

⁽⁶⁾ Controlling dimension: inch

(7) Outline conforms to JEDEC® outline TO-263AB

Revision: 14-Mar-2022

1

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2024 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2024