

**Vishay BCcomponents** 

## **Axial Leaded Multilayer Ceramic Capacitors for Automotive Applications** Class 1 and Class 2, 50 V<sub>DC</sub>, 100 V<sub>DC</sub>, 200 V<sub>DC</sub>



## **FEATURES**

- AEC-Q200 qualified with PPAP available · High reliability MLCC insert with wet build process
- High operating temperature up to 160 °C
- · High capacitance with small size
- Axial mounting style
- Parts compliant with ELV directive
- For new designs the series A...P is recommended (www.vishay.com/ppg?45249)
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

### **APPLICATIONS**

Automotive

| QUICK REFERENCE DATA       |      |             |      |           |         |        |         |        |
|----------------------------|------|-------------|------|-----------|---------|--------|---------|--------|
| DESCRIPTION                |      | VALUE       |      |           |         |        |         |        |
| Ceramic class              |      | 1 2         |      |           |         |        |         |        |
| Ceramic dielectric         |      | COG X7R X8R |      |           | 7       |        |         |        |
| Voltage (V <sub>DC</sub> ) | 50   | 100         | 200  | 50        | 100     | 200    | 50      | 100    |
| Min. capacitance (pF)      | 100  | 100         | 100  | 470       | 470     | 330    | 470     | 470    |
| Max. capacitance (pF)      | 8200 | 8200        | 1000 | 1 000 000 | 470 000 | 68 000 | 150 000 | 27 000 |
| Mounting                   |      | Axial       |      |           |         |        |         |        |

### MARKING

Marking indicates capacitance value and tolerance in accordance with "EIA 198" and voltage marks.

### **OPERATING TEMPERATURE RANGE**

-55 °C to +160 °C (50 % rated voltage above 150 °C)

### **TEMPERATURE CHARACTERISTICS**

Class 1: C0G Class 2: X7R, X8R

## SECTIONAL SPECIFICATIONS

Climatic category (acc. to EN 60058-1) Class 1 and 2: 55/125/21

## **APPROVALS**

EIA 198 IEC 60384-9 AEC-Q200

### DESIGN

- · The capacitors consist of a high reliability MLCC
- The lead wires are 0.5 mm and are made of 100 % tinned copper clad steel wire
- · Coating is made of blue colored flame retardant epoxy resin in accordance with UL 94 V-0

## CAPACITANCE RANGE

100 pF to 1 µF

## **TOLERANCE ON CAPACITANCE**

± 5 %, ± 10 %, ± 20 %

### **RATED VOLTAGE**

50 V<sub>DC</sub>, 100 V<sub>DC</sub>, 200 V<sub>DC</sub>

## **TEST VOLTAGE**

- 50 V<sub>DC</sub> and 100 V<sub>DC</sub>: 250 % of rated voltage
- 200 V<sub>DC</sub>: 200 % of rated voltage

## INSULATION RESISTANCE

100 G $\Omega$  or 1000  $\Omega$ F whichever is less at rated voltage within 2 min of charging.

### **DISSIPATION FACTOR**

- Class 1: 0.1 % max. (at 1 MHz, 1 V where  $C \le 1000 \text{ pF}$ ;
  - at 1 kHz; 1 V where C > 1000 pF)
- 2.5 % max. Class 2: (at 1 kHz, 1 V)

1

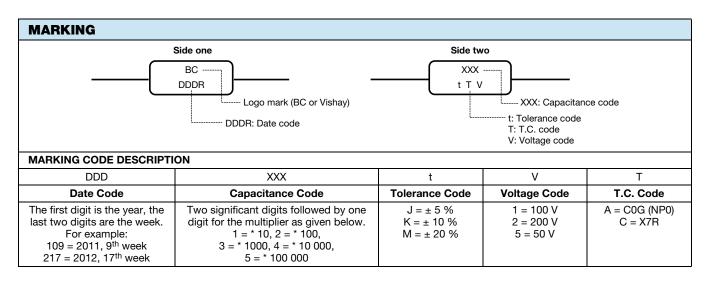


RoHS

COMPLIANT

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000




## Vishay BCcomponents

DIMENSIONS (in millimeters)

| <b>DIMENSIONS</b> (in millimeters) |                    |                    |
|------------------------------------|--------------------|--------------------|
|                                    | ØD<br>1 Lb         |                    |
| SIZE CODE                          | Lb <sub>MAX.</sub> | ØD <sub>MAX.</sub> |
| 15                                 | 3.8                | 2.6                |
| 20                                 | 5.1                | 3.1                |

#### Note

• The leads are matte tinned FeCu wire



| ORDERI                      | ORDERING CODE INFORMATION                                                                                                                                                                                |                                       |                                             |                                             |                                                                              |                          |                          |                                                       |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------|--------------------------|--------------------------|-------------------------------------------------------|
| А                           | 104                                                                                                                                                                                                      | К                                     | 15                                          | X7R                                         | F                                                                            | 5                        | TAA                      | R                                                     |
| 1                           | 234                                                                                                                                                                                                      | 5                                     | 67                                          | 8910                                        | 11                                                                           | 12                       | 13 14 15                 | 16                                                    |
| Product<br>Type             | Capacitance<br>(pF)                                                                                                                                                                                      | Capacitance<br>Tolerance              | Size<br>Code                                | TC<br>Code                                  | Rated<br>Voltage                                                             | Lead<br>Diameter         | Packaging                | AEC-Q200<br>Qualified                                 |
| A = axial<br>leaded<br>MLCC | The first two digits<br>are the significant<br>figures of<br>capacitance and the<br>last digit is a<br>multiplier as<br>follows:<br>1 = * 10<br>2 = * 100<br>3 = * 1000<br>4 = * 10 000<br>5 = * 100 000 | J = ± 5 %<br>K = ± 10 %<br>M = ± 20 % | Please<br>refer to<br>relevant<br>datasheet | Please<br>refer to<br>relevant<br>datasheet | F = 50 V <sub>DC</sub><br>H = 100 V <sub>DC</sub><br>K = 200 V <sub>DC</sub> | 5 = 0.50 mm<br>± 0.05 mm | TAA = reel<br>UAA = ammo | R =<br>AEC-Q200<br>qualified<br>and RoHS<br>compliant |



## Vishay BCcomponents

## **ORDERING CODES**

| DIELECTRIC COG |                    |                     |                     |
|----------------|--------------------|---------------------|---------------------|
| CAP.<br>(pF)   | 50 V <sub>DC</sub> | 100 V <sub>DC</sub> | 200 V <sub>DC</sub> |
| 100            | A101#15C0GF5###R   | A101#15C0GH5###R    | A101#15C0GK5###R    |
| 120            | A121#15C0GF5###R   | A121#15C0GH5###R    | A121#15C0GK5###R    |
| 150            | A151#15C0GF5###R   | A151#15C0GH5###R    | A151#15C0GK5###R    |
| 180            | A181#15C0GF5###R   | A181#15C0GH5###R    | A181#15C0GK5###R    |
| 220            | A221#15C0GF5###R   | A221#15C0GH5###R    | A221#15C0GK5###R    |
| 270            | A271#15C0GF5###R   | A271#15C0GH5###R    | A271#15C0GK5###R    |
| 330            | A331#15C0GF5###R   | A331#15C0GH5###R    | A331#15C0GK5###R    |
| 390            | A391#15C0GF5###R   | A391#15C0GH5###R    | A391#15C0GK5###R    |
| 470            | A471#15C0GF5###R   | A471#15C0GH5###R    | A471#15C0GK5###R    |
| 560            | A561#15C0GF5###R   | A561#15C0GH5###R    | A561#15C0GK5###R    |
| 680            | A681#15C0GF5###R   | A681#15C0GH5###R    | A681#15C0GK5###R    |
| 820            | A821#15C0GF5###R   | A821#15C0GH5###R    | A821#15C0GK5###R    |
| 1000           | A102#15C0GF5###R   | A102#15C0GH5###R    | A102#15C0GK5###R    |
| 1200           | A122#15C0GF5###R   | A122#15C0GH5###R    | -                   |
| 1500           | A152#15C0GF5###R   | A152#15C0GH5###R    | -                   |
| 1800           | A182#15C0GF5###R   | A182#15C0GH5###R    | -                   |
| 2200           | A222#15C0GF5###R   | A222#20C0GH5###R    | -                   |
| 2700           | A272#15C0GF5###R   | A272#20C0GH5###R    | -                   |
| 3300           | A332#15C0GF5###R   | A332#20C0GH5###R    | -                   |
| 3900           | A392#15C0GF5###R   | A392#20C0GH5###R    | -                   |
| 4700           | A472#20C0GF5###R   | A472#20C0GH5###R    | -                   |
| 5600           | A562#20C0GF5###R   | A562#20C0GH5###R    | -                   |
| 6800           | A682#20C0GF5###R   | A682#20C0GH5###R    | -                   |
| 8200           | A822#20C0GF5###R   | A822#20C0GH5###R    | -                   |

#### Notes

• Lead diameter is 0.5 mm

• # 5<sup>th</sup> digit is capacitance tolerance code:  $\pm$  5 % = J;  $\pm$  10 % = K

• # 13<sup>th</sup>, 14<sup>th</sup> and 15<sup>th</sup> digits are packaging code: reel = TAA; ammo = UAA



Vishay BCcomponents

| DIELECTRIC X7R |                                 |                                 |                     |
|----------------|---------------------------------|---------------------------------|---------------------|
| CAP.<br>(pF)   | 50 V <sub>DC</sub>              | 100 V <sub>DC</sub>             | 200 V <sub>DC</sub> |
| 330            | -                               | -                               | A331#15X7RK5###R    |
| 390            | -                               | -                               | A391#15X7RK5###R    |
| 470            | A471#15X7RF5###R                | A471#15X7RH5###R                | A471#15X7RK5###R    |
| 560            | A561#15X7RF5###R                | A561#15X7RH5###R                | A561#15X7RK5###R    |
| 680            | A681#15X7RF5###R                | A681#15X7RH5###R                | A681#15X7RK5###R    |
| 820            | A821#15X7RF5###R                | A821#15X7RH5###R                | A821#15X7RK5###R    |
| 1000           | A102#15X7RF5###R                | A102#15X7RH5###R                | A102#15X7RK5###R    |
| 1200           | A122#15X7RF5###R                | A122#15X7RH5###R                | A122#15X7RK5###R    |
| 1500           | A152#15X7RF5###R                | A152#15X7RH5###R                | A152#15X7RK5###R    |
| 1800           | A182#15X7RF5###R                | A182#15X7RH5###R                | A182#15X7RK5###R    |
| 2200           | A222#15X7RF5###R                | A222#15X7RH5###R                | A222#15X7RK5###R    |
| 2700           | A272#15X7RF5###R                | A272#15X7RH5###R                | A272#15X7RK5###R    |
| 3300           | A332#15X7RF5###R                | A332#15X7RH5###R                | A332#15X7RK5###R    |
| 3900           | A392#15X7RF5###R                | A392#15X7RH5###R                | A392#15X7RK5###R    |
| 4700           | A472#15X7RF5###R                | A472#15X7RH5###R                | A472#15X7RK5###R    |
| 5600           | A562#15X7RF5###R                | A562#15X7RH5###R                | A562#15X7RK5###R    |
| 6800           | A682#15X7RF5###R                | A682#15X7RH5###R                | A682#15X7RK5###R    |
| 8200           | A822#15X7RF5###R                | A822#15X7RH5###R                | A822#15X7RK5###R    |
| 10 000         | A103#15X7RF5###R                | A103#15X7RH5###R                | A103#15X7RK5###R    |
| 12 000         | A123#15X7RF5###R                | A123#15X7RH5###R                | A123#15X7RK5###R    |
| 15 000         | A153#15X7RF5###R                | A153#15X7RH5###R                | A153#15X7RK5###R    |
| 18 000         | A183#15X7RF5###R                | A183#15X7RH5###R                | A183#15X7RK5###R    |
| 22 000         | A223#15X7RF5###R                | A223#15X7RH5###R                | A223#15X7RK5###R    |
| 27 000         | A273#15X7RF5###R                | A273#15X7RH5###R                | A273#15X7RK5###R    |
| 33 000         | A333#15X7RF5###R                | A333#15X7RH5###R                | A333#20X7RK5###R    |
| 39 000         | A393#15X7RF5###R                | A393#15X7RH5###R                | A393#20X7RK5###R    |
| 47 000         | A473#15X7RF5###R                | A473#15X7RH5###R                | A473#20X7RK5###R    |
| 56 000         | A563#15X7RF5###R                | A563#15X7RH5###R                | A563#20X7RK5###R    |
| 68 000         | A683#15X7RF5###R                | A683#15X7RH5###R                | A683#20X7RK5###R    |
| 82 000         | A823#15X7RF5###R                | A823#15X7RH5###R                | -                   |
| 100 000        | A104#15X7RF5###R                | A104#15X7RH5###R                | -                   |
| 150 000        | A154#15X7RF5###R                | A154#20X7RH5###R                | -                   |
| 220 000        | A224#20X7RF5###R                | A224#20X7RH5###R                | -                   |
| 330 000        | A334#20X7RF5###R                | A334#20X7RH5###R <sup>(1)</sup> | -                   |
| 470 000        | A474#20X7RF5###R                | A474#20X7RH5###R <sup>(1)</sup> | -                   |
| 560 000        | A564#20X7RF5###R <sup>(1)</sup> | -                               | -                   |
| 680 000        | A684#20X7RF5###R <sup>(1)</sup> | -                               | -                   |
| 1 000 000      | A105#20X7RF5###R <sup>(1)</sup> | -                               | -                   |

#### Notes

 $^{(1)}\,$  The Ø D is 4.5 mm max.

• Lead diameter is 0.5 mm

# 5<sup>th</sup> digit is capacitance tolerance code: ± 10 % = K; ± 20 % = M

• # 13<sup>th</sup>, 14<sup>th</sup> and 15<sup>th</sup> digits are packaging code: reel = TAA; ammo = UAA

## Vishay BCcomponents

www.vishay.com

SHAY

| CTRIC X8R<br>CAP. |                    |                     |
|-------------------|--------------------|---------------------|
| (pF)              | 50 V <sub>DC</sub> | 100 V <sub>DC</sub> |
| 470               | A471#15X8RF5###R   | A471#15X8RH5###R    |
| 560               | A561#15X8RF5###R   | A561#15X8RH5###R    |
| 680               | A681#15X8RF5###R   | A681#15X8RH5###R    |
| 820               | A821#15X8RF5###R   | A821#15X8RH5###R    |
| 1000              | A102#15X8RF5###R   | A102#15X8RH5###R    |
| 1200              | A122#15X8RF5###R   | A122#15X8RH5###R    |
| 1500              | A152#15X8RF5###R   | A152#15X8RH5###R    |
| 1800              | A182#15X8RF5###R   | A182#15X8RH5###R    |
| 2200              | A222#15X8RF5###R   | A222#15X8RH5###R    |
| 2700              | A272#15X8RF5###R   | A272#15X8RH5###R    |
| 3300              | A332#15X8RF5###R   | A332#15X8RH5###R    |
| 3900              | A392#15X8RF5###R   | A392#15X8RH5###R    |
| 4700              | A472#15X8RF5###R   | A472#15X8RH5###R    |
| 5600              | A562#15X8RF5###R   | A562#15X8RH5###R    |
| 6800              | A682#15X8RF5###R   | A682#15X8RH5###R    |
| 8200              | A822#15X8RF5###R   | A822#15X8RH5###R    |
| 10 000            | A103#15X8RF5###R   | A103#15X8RH5###R    |
| 12 000            | A123#15X8RF5###R   | A123#15X8RH5###R    |
| 15 000            | A153#15X8RF5###R   | A153#15X8RH5###R    |
| 18 000            | A183#15X8RF5###R   | A183#15X8RH5###R    |
| 22 000            | A223#15X8RF5###R   | A223#15X8RH5###R    |
| 27 000            | A273#15X8RF5###R   | A273#15X8RH5###R    |
| 33 000            | A333#15X8RF5###R   | -                   |
| 39 000            | A393#15X8RF5###R   | -                   |
| 47 000            | A473#15X8RF5###R   | -                   |
| 56 000            | A563#15X8RF5###R   | -                   |
| 68 000            | A683#20X8RF5###R   | -                   |
| 82 000            | A823#20X8RF5###R   | -                   |
| 100 000           | A104#20X8RF5###R   | -                   |
| 150 000           | A154#20X8RF5###R   | _                   |

Notes

• Lead diameter is 0.5 mm

• # 5<sup>th</sup> digit is capacitance tolerance code:  $\pm$  10 % = K;  $\pm$  20 % = M

• # 13<sup>th</sup>, 14<sup>th</sup> and 15<sup>th</sup> digits are packaging code: reel = TAA; ammo = UAA

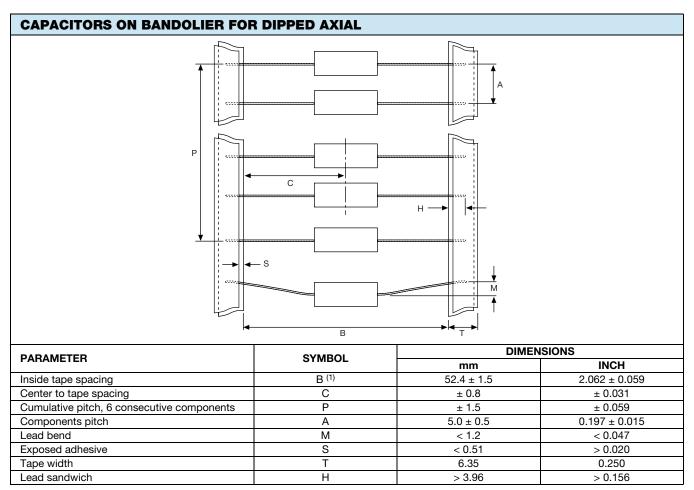


## Vishay BCcomponents

## TAPING AND PACKAGING

### LABELLING

Each reel is provided with a label showing the following details:


manufacturer, A style, capacitance, tolerance, batch number, quantity of components, rated voltage, dielectric.

On special request other designations can be shown.

For example:



| PACKAGING QUANTITIES AND BOX DIMENSIONS |                                                                 |      |                |  |
|-----------------------------------------|-----------------------------------------------------------------|------|----------------|--|
| PACKAGING                               | AING SIZE CODE SMALLEST PACKAGING BOX DIMENSIONS L x W x H (mm) |      |                |  |
| Tape on reel                            | 15, 20                                                          | 7000 | 370 x 370 x 90 |  |
| Ammopack                                | 15, 20                                                          | 4000 | 265 x 85 x 95  |  |

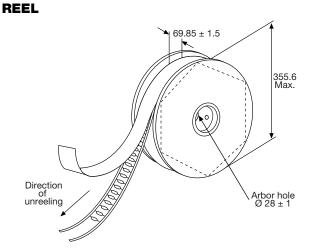


#### Note

<sup>(1)</sup> Inside tape spacing 26.0 mm + 1.51 mm/- 0.0 mm is available on request



Vishay BCcomponents


## **REEL DATA**

A maximum of 0.5 % of the total number of capacitors per reel may be missing.

A maximum of 1 consecutive vacant positions is followed by 6 consecutive components.

Tape begins and ends with a minimum of 4 empty positions (180 mm tape).

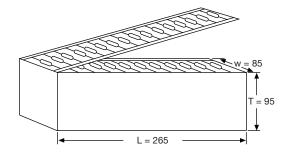
Maximum of 5 splicers per reel.



| REEL DIMENSIONS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                 | $ \begin{array}{c} & A \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & $ |            |
| REE             | L SIZE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (mm)       |
| A               | Outer diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 355.6 max. |
| L               | Hole diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28 ± 1     |
| К               | Core diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90         |
| H <sub>1</sub>  | Internal width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 69.9 ± 1.5 |

## AMMOPACK DATA

A maximum of 0.5 % of the total number of capacitors per pack may be missing.


A maximum of 1 consecutive vacant positions is followed by 6 consecutive components.

Tape begins and ends with a minimum of 4 empty positions (180 mm tape).

Maximum of 5 splicers per pack.

The cumulative pitch tolerance over 20 consecutive units is not to exceed  $\pm$  1.0 mm.

## AMMOPACK



| RELATED DOCUMENTS   |                          |
|---------------------|--------------------------|
| General Information | www.vishay.com/doc?45214 |

7



Vishay

## Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2025 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2025

1