By Mike Casey

One of the least understood resistor network schematics in the industry today is the dual-resistor terminator schematic shown below in the 8-pin SIP and in the 16-pin DIP configuration.

This schematic shows up in both commercial / industrial parts and in military parts. Commercial parts are sometimes identified as TTL dual-line terminators or as pulse-squaring terminators. The military parts are identified in MIL-PRF-83401 as “H” (SIP) and “J” (DIP) schematics.

The SIP and the DIP schematics are both basically the same, in that each has two common busses with “N” leads and “N-2” series sets of R1 and R2 in parallel between the two busses. This ‘unique’ electrical schematic makes it impossible to measure the individual R1 and R2 values using a simple ohmmeter, a two-wire / four-wire (Kelvin) digital ohmmeter, or a resistance-scanning system without active-guarding capabilities.

However, two methods are available for determination of the accuracy of the resistor within each network if an active-guard test system is not available. Method I described below may be used to calculate the ‘equivalent’ resistances measureable at the various terminals of the network. Method II describes how to measure the ‘voltage-ratio’ of each resistor in the network.
METHOD I

All schematics regardless of the number of pin-outs can be analyzed in the same way, but the 16-pin DIP will be examined here since it is the most complex.

STEP 1: Redraw the 16-pin DIP schematic as shown below. It will then resemble the SIP schematic except for the number of \(R_1 + R_2 \) parallel branches in the circuit.

![Fig. 3](image)

STEP 2: Calculate the first of “3” equivalent resistance measurements, the measurement between two common busses, as follows. On the SIP schematic, this measurement will be made between pin 1 and pin “N”. On the DIP schematic, this measurement will be made between pin “N” and pin “N/2”.

For the schematic shown in Figure 3, the equivalent resistance between the two busses is calculated using the following formula:

\[
R_{eq. \ (between \ pin \ N \ and \ N/2)} = \frac{R_1 + R_2}{N-2}
\]

STEP 3: Calculate the second, “\(R_1 \)”, equivalent resistance measurement, which can be made between pins 1, 2, 3,..., \(N-1 \) (excluding pin \(N/2 \)), and the common pin “N”.

To illustrate this, the schematic shown in Fig. 3 is simplified as follows:

![Step 3A](image)
Add $R_2 + R_{eq}$ in series to get R'.

![Diagram](image1)

Step 3B

Compute the parallel equivalent of R_1 and R'.

![Diagram](image2)

Step 3C

This is the R_{eq} resistance value that can be measured between pins 1, 2, 3,…, N-1 (excluding pin N/2).

STEP 4: Calculate the third and last, “R_2” equivalent resistance measurement, which can be made between pins 1, 2, 3,…, N-1 (excluding pin N) and the common pin N/2. To illustrate this, the schematic shown in Fig. 3 is simplified as follows:

![Diagram](image3)

Step 4A

Add $R_1 + R_{eq}$ in series to get R''.

![Diagram](image4)

Step 4B
Understanding Dual Terminator Resistor Networks

Compute the parallel equivalent of R_2 and R^*.

\[
R_{eq} = \frac{R_2 \times R^*}{R_2 + R^*}
\]

Step 4C

This is the R_{eq} resistance value that can be measured between pins 1, 2, 3,..., N-1 (excluding pin N), and the common pin N. This concludes the calculations for R_{eq}, $R_{1 eq}$, and $R_{2 eq}$, the resistance values that can be measured on the network using a simple ohmmeter or an unguarded resistance test system.

METHOD II

All schematics regardless of the number of pin-outs can be analyzed in this manner. The object is to compute the theoretical voltage drop at pins 1, 2, 3,..., N-1 with voltage “V” applied to pin N and with pin N/2 at ground potential.

STEP 1: Referring to Fig. 3, compute the current flow through on $R_1 + R_2$ series branch as follows:

\[
I = \frac{V}{R_1 + R_2}
\]

STEP 2: Calculate the voltage at pins 1, 2, 3,..., N-1 as follows:

\[
V_{pin} = I \times R_2 = \frac{V \times R_2}{R_1 + R_2}
\]

With a precision power supply supplying the voltage V (typically 5 VDC), the voltage at each pin, V_{pin}, can be measured and should not vary more than ± the individual resistor tolerance at each pin. If all voltages measure the calculated V_{pin} ± the individual resistor tolerance, then all resistors within the circuit can be assumed to be within tolerance.