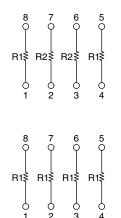
# AORN

RoHS

COMPLIANT HALOGEN

FREE




Vishay Dale Thin Film

## Molded, 50 mil Pitch, Dual-In-Line Thin Film Resistor, Precision Automotive, AEC-Q200 Qualified, Networks



The AORN series features a narrow body (0.150") small outline SMT package. The network is constructed with a tantalum nitride resistor film on a high purity alumina substrate for improved ESD and moisture protection.

### SCHEMATICS



#### Note

Consult factory for additional divider ratios and resistance values

### FEATURES

- Moisture resistant tantalum nitride resistive film (MIL STD 202, method 106)
- Standard 8 pin count (0.150" narrow body) JEDEC<sup>®</sup> MS-012
- Rugged molded case construction
- Excellent long term ratio stability (ΔR ± 0.015 %)
- Low TCR tracking ± 5 ppm/°C
- Passes sulfur resistance test per ASTM B 809
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

#### Note

<sup>\*</sup> This datasheet provides information about parts that are RoHS-compliant and / or parts that are non RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details

### TYPICAL APPLICATIONS

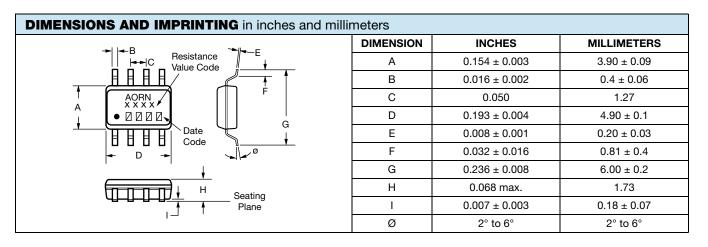
- Voltage divider circuits
- · Engine control units
- Signal conditioning
- Feedback circuits

### TYPICAL PERFORMANCE

| $\bullet$ | ABSOLUTE | TRACKING |  |
|-----------|----------|----------|--|
| TCR       | 25       | 5        |  |
|           | ABSOLUTE | RATIO    |  |
| TOL.      | 0.10     | 0.05     |  |

| TANDARD DIVIDER VALUES               |                       |                |  |
|--------------------------------------|-----------------------|----------------|--|
| RATIO R <sub>1</sub> /R <sub>2</sub> | <i>R</i> <sub>1</sub> | R <sub>2</sub> |  |
| 100:1                                | 100 kΩ                | 1 kΩ           |  |
| 50:1                                 | 50 kΩ                 | 1 kΩ           |  |
| 25:1                                 | 25 kΩ                 | 1 kΩ           |  |
| 20:1                                 | 20 kΩ                 | 1 kΩ           |  |
| 10:1                                 | 10 kΩ                 | 1 kΩ           |  |
| 5:1                                  | 10 kΩ                 | 2 kΩ           |  |
| 2:1                                  | 10 kΩ                 | 5 kΩ           |  |
|                                      | 100 kΩ                |                |  |
|                                      | 100 kΩ                |                |  |
|                                      | 49.9 kΩ               |                |  |
|                                      | 24.9 kΩ               |                |  |
| 1:1                                  | 20.0 kΩ               |                |  |
|                                      | 10.0 kΩ               |                |  |
| Ē                                    | 4.99 kΩ               |                |  |
| Ē                                    | 2.0 kΩ                |                |  |
|                                      | 1.0 kΩ                |                |  |

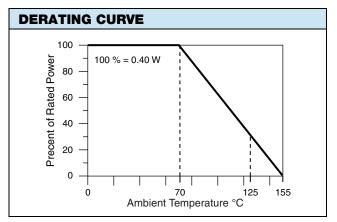
Revision: 22-Jan-2025


1 For technical questions, contact: <u>thinfilm@vishay.com</u> Document Number: 60127

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 www.vishay.com

Vishay Dale Thin Film

AORN


| STANDARD ELECTRICAL SPECIFICATIONS |                                              |                       |  |
|------------------------------------|----------------------------------------------|-----------------------|--|
| TEST                               | SPECIFICATIONS                               | CONDITIONS            |  |
| Material                           | Tantalum nitride (Ta <sub>2</sub> N)         | -                     |  |
| Pin/Lead Number                    | 8                                            | -                     |  |
| Resistance Range                   | 1 k $\Omega$ to 100 k $\Omega$ per resistor  | -                     |  |
| TCR: Absolute                      | ± 25 ppm/°C (standard)                       | -55 °C to +155 °C     |  |
| TCR: Tracking                      | ± 5 ppm/°C (typical)                         | -55 °C to +155 °C     |  |
| Tolerance: Absolute                | ± 0.10 % to ± 1 %                            | At +25 °C temperature |  |
| Tolerance: Ratio                   | ± 0.05 % to ± 0.5 %                          | At +25 °C temperature |  |
| Power Rating: Resistor             | 100 mW                                       | Maximum at +70 °C     |  |
| Power Rating: Package              | 400 mW                                       | Maximum at +70 °C     |  |
| Stability: Absolute                | $\Delta R \pm 0.05 \%$                       | 1000 h at +155 °C     |  |
| Stability: Ratio                   | $\Delta R \pm 0.015 \%$                      | 1000 h at +155 °C     |  |
| Voltage Coefficient                | < 0.1 ppm/V                                  | -                     |  |
| Working Voltage                    | 100 V max. not to exceed $\sqrt{P \times R}$ | -                     |  |
| Operating Temperature Range        | -55 °C to +155 °C                            | -                     |  |
| Storage Temperature Range          | -55 °C to +155 °C                            | -                     |  |
| Noise                              | ≤ -30 dB                                     | -                     |  |
| Thermal EMF                        | 0.08 µV/°C                                   | -                     |  |
| Shelf Life Stability: Absolute     | $\Delta R \pm 0.01$ %                        | 1 year at +25 °C      |  |
| Shelf Life Stability: Ratio        | $\Delta R \pm 0.002 \%$                      | 1 year at +25 °C      |  |



| MECHANICAL SPECIFICATIONS |                          |  |  |  |
|---------------------------|--------------------------|--|--|--|
| <b>Resistive Element</b>  | Tantalum nitride (Ta2N)  |  |  |  |
| Substrate Material        | Ceramic                  |  |  |  |
| Body                      | Molded epoxy             |  |  |  |
| Terminals                 | Copper alloy             |  |  |  |
| Lead Frame Finish         | Ni/Pd/Au solder free (1) |  |  |  |

Note

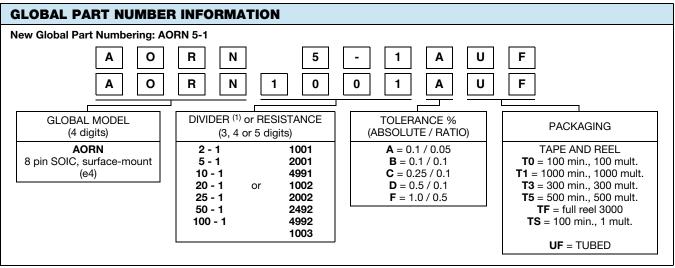
• Gold thickness less than 10 µ"



Revision: 22-Jan-2025

2

Document Number: 60127


For technical questions, contact: <u>thinfilm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>



## Vishay Dale Thin Film

AORN

| ENVIRONMENTAL TESTS                           |                     |                                                       |                                |                                        |                                        |  |
|-----------------------------------------------|---------------------|-------------------------------------------------------|--------------------------------|----------------------------------------|----------------------------------------|--|
| ENVIRONMENTAL TEST                            |                     | CONDITONS                                             | SUGGESTED<br>PRODUCT<br>LIMITS | TYPICAL VISHAY<br>PERFORMANCE<br>< 10K | TYPICAL VISHAY<br>PERFORMANCE<br>> 10K |  |
| Max. Ambient Temperature<br>at Rated Wattage  |                     |                                                       | +70 °C                         | +70 °C                                 | +70 °C                                 |  |
| Max. Ambient Temperature<br>at Power Derating |                     |                                                       | +155 °C                        | +155 °C                                | +155 °C                                |  |
| High Temperature Exposure                     | $\Delta R$          | MIL-STD-202, 108, 1000 h at 155 °C                    | ± 0.20 %                       | 0.08 %                                 | 0.045 %                                |  |
| Temperature Cycling                           | $\Delta \mathbf{R}$ | JESD22, A104, 1000 cycles,<br>-55 °C to +155 °C       | ± 0.25 %                       | 0.012 %                                | 0.010 %                                |  |
| Moisture Resistance                           | $\Delta R$          | MIL-STD-202 method 106                                | ± 0.20 %                       | 0.007 %                                | 0.007 %                                |  |
| Biased Humidity                               | $\Delta \mathbf{R}$ | MIL-STD-202, 103, 1000 h at 85 °C,<br>85 % RH, 10 % P | ± 0.25 %                       | 0.075 %                                | 0.075 %                                |  |
| Life                                          | $\Delta R$          | MIL-STD-202, 108, 1000 h at 155 °C                    | ± 0.50 %                       | 0.199 %                                | 0.221 %                                |  |
| Mechanical Shock                              | $\Delta R$          | MIL-STD-202 method 213, condition C                   | ± 0.25 %                       | 0.004 %                                | 0.002 %                                |  |
| Vibration                                     | $\Delta \mathbf{R}$ | MIL-STD-202 method 204,<br>10 Hz to 2 kHz             | ± 0.25 %                       | 0.004 %                                | 0.002 %                                |  |
| <b>Resistance to Soldering Heat</b>           | $\Delta \mathbf{R}$ | MIL-STD-202, 204, condition B                         | ± 0.10 %                       | -0.008 %                               | 0.016 %                                |  |
| Electrostatic Discharg                        | ∆ <b>R</b>          | AEC-Q200-002 at 1 kV, human body                      | ± 0.50 %                       | -0.028 %                               |                                        |  |
|                                               |                     | AEC-Q200-002 at 2 kV, human body                      | ± 0.50 %                       |                                        | 0.108 %                                |  |
| Solderability                                 |                     | J-STD-002 method B and B1                             | 95 %                           | Acceptable                             | Acceptable                             |  |
| Terminal Strenght                             | $\Delta \mathbf{R}$ | AEC-Q200-006 at 1 kg for 60 s                         |                                | Acceptable                             | Acceptable                             |  |
| Flame Retardance                              |                     | AEC-Q200-001 Para 4.0                                 |                                | Acceptable                             | Acceptable                             |  |



#### Note

(1) Examples:

1. 2-1 = ratio between resistance values

2. 1001 = four 1K resistors

3



Vishay

## Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2025 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2025

1