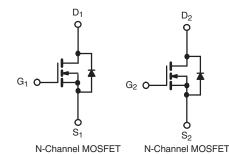

SQJ968EP

Vishay Siliconix

Automotive Dual N-Channel 60 V (D-S) 175 °C MOSFET

PRODUCT SUMMARY	
V _{DS} (V)	60
$R_{DS(on)} (\Omega)$ at $V_{GS} = 10 V$	0.0336
$R_{DS(on)} (\Omega)$ at $V_{GS} = 4.5 V$	0.0444
I _D (A) per leg	23.5
Configuration	Dual
Package	PowerPAK SO-8L



FEATURES

- TrenchFET[®] power MOSFET
- AEC-Q101 qualified
- 100 % R_q and UIS tested
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

RoHS COMPLIANT HALOGEN FREE

ABSOLUTE MAXIMUM RATING	S (T _C = 25 °C, unles	s otherwise noted)	
PARAMETER		SYMBOL	LIMIT	UNIT
Drain-Source Voltage		V _{DS}	60	v
Gate-Source Voltage	V _{GS}	± 20	v	
Continuous Drain Current ^a	T _C = 25 °C	1	23.5	
	T _C = 125 °C	I _D	13.5	
Continuous Source Current (Diode Conduct	I _S	23	А	
Pulsed Drain Current ^b	I _{DM}	72		
Single Pulse Avalanche Current	L = 0.1 mH	I _{AS}	9	
Single Pulse Avalanche Energy		E _{AS}	4	mJ
Martin an Daria a Dirata di a b	T _C = 25 °C	Р	42	w
Maximum Power Dissipation ^b	T _C = 125 °C	P _D	14	vv
Operating Junction and Storage Temperature	T _J , T _{stg}	-55 to +175	°C	
Soldering Recommendations (Peak Tempera	ature) ^{d, e}		260	

THERMAL RESISTANCE RATINGS				
PARAMETER		SYMBOL	LIMIT	UNIT
Junction-to-Ambient	PCB Mount ^c	R _{thJA}	85	°C/W
Junction-to-Case (Drain)		R _{thJC}	3.5	C/W

Notes

- a. Package limited.
- b. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %.
- c. When mounted on 1" square PCB (FR4 material).

d. See solder profile (<u>www.vishay.com/doc?73257</u>). The PowerPAK SO-8L is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components.

1

www.vishay.com

SQJ968EP

Vishay Siliconix

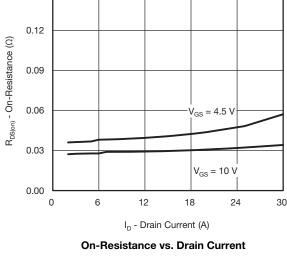
PARAMETER	SYMBOL	TES	MIN.	TYP.	MAX.	UNIT	
Static					•		
Drain-Source Breakdown Voltage	V _{DS}	V _{GS} =	$V_{GS} = 0 V, I_{D} = 250 \mu A$		-	-	V
Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} =	= V _{GS} , I _D = 250 μΑ	1.5	2.0	2.5	v
Gate-Source Leakage	I _{GSS}	V _{DS} =	: 0 V, V _{GS} = ± 20 V	-	-	± 100	nA
		$V_{GS} = 0 V$	V _{DS} = 60 V	-	-	1	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V$	V _{DS} = 60 V, T _J = 125 °C	-	-	50	μA
		$V_{GS} = 0 V$	V _{DS} = 60 V, T _J = 175 °C	-	-	150	$ \begin{array}{c c} & V \\ 5 & V \\ \hline 5 & & V \\ \hline 0 & & nA \\ \hline 0 & & \mu A \\ \hline 0 & & & \mu A \\ \hline 0 & & & & & \\ \hline 14 & & & & & \\ \hline 15 & & & & & \\ \hline 15 & & & & & \\ \hline 16 & & & & & \\ 16 & & & & & \\ \hline 16 & & & & & \\ 16 & & & & $
On-State Drain Current ^a	I _{D(on)}	$V_{GS} = 10 V$	$V_{DS} \ge 5 V$	30	-	-	Α
		$V_{GS} = 10 V$	I _D = 4.8 A	-	0.0280	0.0336	
Durin Source On State Desistance a	Б	$V_{GS} = 10 V$	I _D = 4.8 A, T _J = 125 °C	-	-	0.0900	
Drain-Source On-State Resistance ^a	R _{DS(on)}	V _{GS} = 10 V	I _D = 4.8 A, T _J = 175 °C	-	-	0.1430	0.0336 Ω 0.0900 Ω 0.1430 Ω 0.0444 S 714 pF 48 PF
		$V_{GS} = 4.5 V$	I _D = 4.2 A	-	0.0370	0.0444	
Forward Transconductance ^b	g _{fs}	V _{DS} = 15 V, I _D = 4.8 A		-	16	-	S
Dynamic ^b		•		•		•	
Input Capacitance	C _{iss}		V _{DS} = 30 V, f = 1 MHz	-	571	714	pF
Output Capacitance	C _{oss}	$V_{GS} = 0 V$		-	98	123	
Reverse Transfer Capacitance	C _{rss}			-	38	48	
Total Gate Charge ^c	Qg			-	12.3	18.5	
Gate-Source Charge ^c	Q _{gs}	$V_{GS} = 10 V$	$V_{DS} = 30 \text{ V}, I_D = 4.5 \text{ A}$	-	1.9	-	nC
Gate-Drain Charge ^c	Q _{gd}			-	2.6	-	
Gate Resistance	R _g	f = 1 MHz		1.3	-	6	Ω
Turn-On Delay Time ^c	t _{d(on)}			-	8	12	
Rise Time ^c	t _r	$\label{eq:VDD} \begin{array}{l} V_{\text{DD}} = 30 \text{ V}, \ R_{\text{L}} = 30 \ \Omega \\ I_{\text{D}} \cong 1 \text{ A}, \ V_{\text{GEN}} = 10 \text{ V}, \ R_{\text{g}} = 1 \ \Omega \end{array}$		-	9	13.5	ns
Turn-Off Delay Time ^c	t _{d(off)}			-	19.5	29	
Fall Time ^c	t _f			-	6.5	10	
Source-Drain Diode Ratings and Chara	acteristics ^b	·			•		
Pulsed Current ^a	I _{SM}			-	-	32	Α
Forward Voltage	V _{SD}	I _F = 3.1 A, V _{GS} = 0 V		-	0.8	1.1	V

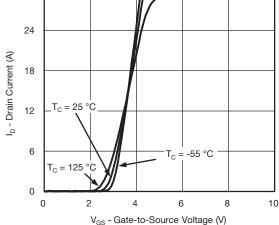
Notes

a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %.

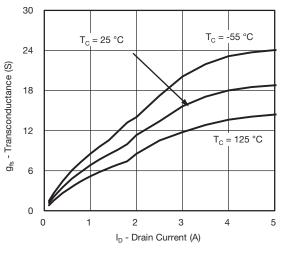
b. Guaranteed by design, not subject to production testing.

c. Independent of operating temperature.

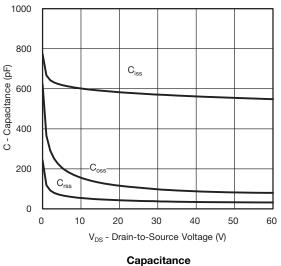

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

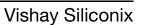

2

T_C = 125 °C T_C -55 °C 0 3 4 5 0 1 2 1 2 V_{GS} - Gate-to-Source Voltage (V) **Transfer Characteristics** 1000


$V_{GS} = 3 V$ 0 8 10 6 0 2 V_{DS} - Drain-to-Source Voltage (V) **Output Characteristics** 30

30





S16-1227-Rev. C, 20-Jun-16

Document Number: 62817

For technical questions, contact: automostechsupport@vishay.com

V_{GS} = 10 V thru 5 V

 $V_{GS} = 4 V$

4

°C $\Gamma_{\rm C} = 25$

24

18

12

6

0

10.0

8.0

6.0

4.0

2.0

0.0

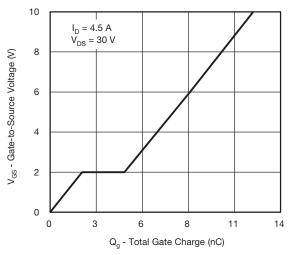
0.15

0

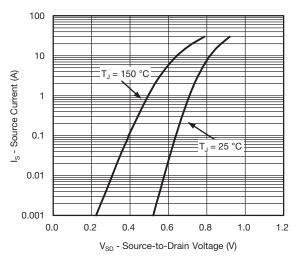
l_D - Drain Current (A)

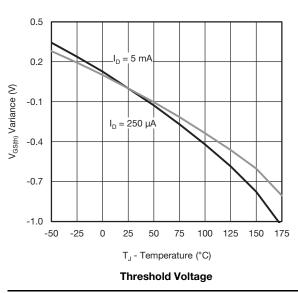
0

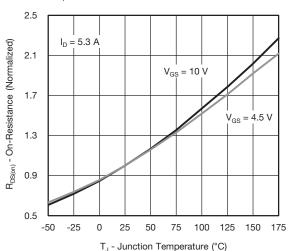
2

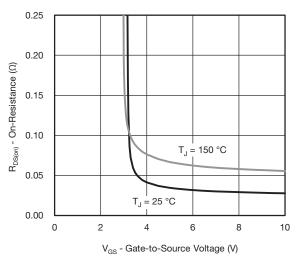

I_D - Drain Current (A)

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted) 30

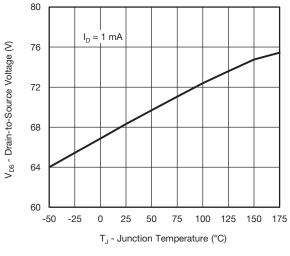

SQJ968EP


TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)





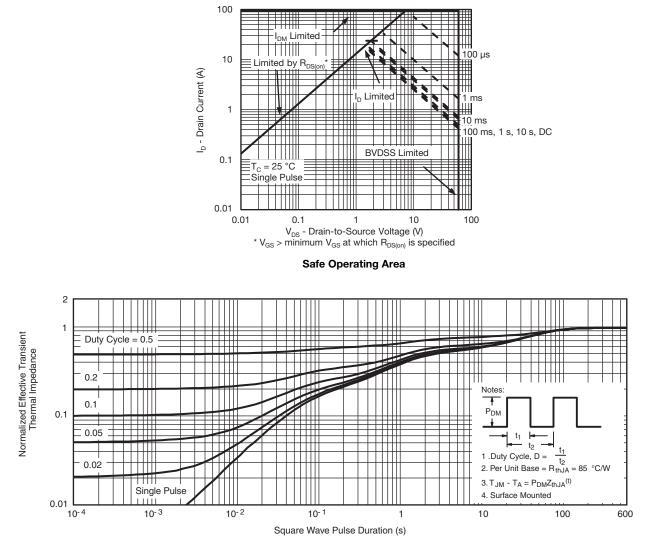
Source Drain Diode Forward Voltage



On-Resistance vs. Junction Temperature

On-Resistance vs. Gate-to-Source Voltage

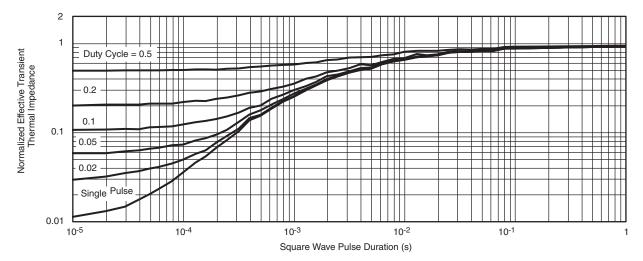
Drain Source Breakdown vs. Junction Temperature


S16-1227-Rev. C, 20-Jun-16

Document Number: 62817

For technical questions, contact: <u>automostechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

THERMAL RATINGS ($T_A = 25 \text{ °C}$, unless otherwise noted)


Normalized Thermal Transient Impedance, Junction-to-Ambient

SQJ968EP

Vishay Siliconix

THERMAL RATINGS (T_A = 25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Case

Note

• The characteristics shown in the two graphs

- Normalized Transient Thermal Impedance Junction-to-Ambient (25 °C)

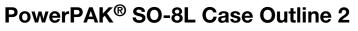
- Normalized Transient Thermal Impedance Junction-to-Case (25 °C)

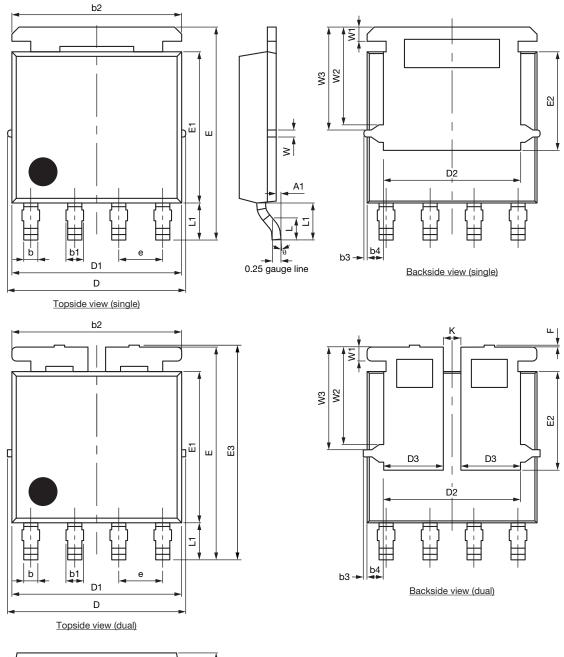
are given for general guidelines only to enable the user to get a "ball park" indication of part capabilities. The data are extracted from single pulse transient thermal impedance characteristics which are developed from empirical measurements. The latter is valid for the part mounted on printed circuit board - FR4, size 1" x 1" x 0.062", double sided with 2 oz. copper, 100 % on both sides. The part capabilities can widely vary depending on actual application parameters and operating conditions.

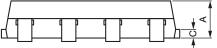
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?62817.

SQJ968EP

Vishay Siliconix


REVISION HISTORY^a

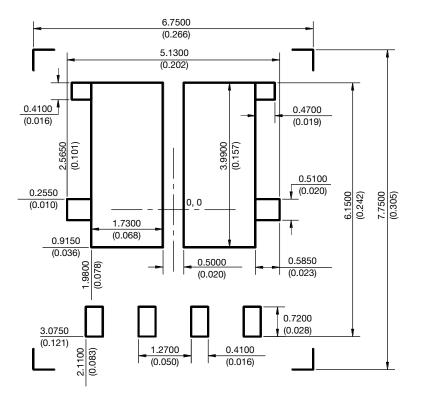

NEVISION	moroni	
REVISION	DATE	DESCRIPTION OF CHANGE
В	04-Aug-15	Revised R _g minimum limit
С	14-Jun-16	• I _D and P _D corrected


Note

a. As of April 2014

Package Information

Vishay Siliconix


DIM.	MILLIMETERS			INCHES				
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX		
А	1.00	1.07	1.14	0.039	0.042	0.045		
A1	0.00	-	0.127	0.00	-	0.005		
b	0.33	0.41	0.48	0.013	0.016	0.019		
b1	0.44	0.51	0.58	0.017	0.020	0.023		
b2	4.80	4.90	5.00	0.189	0.193	0.197		
b3		0.094			0.004			
b4		0.47			0.019			
С	0.20	0.25	0.30	0.008	0.010	0.012		
D	5.00	5.13	5.25	0.197	0.202	0.207		
D1	4.80	4.90	5.00	0.189	0.193	0.197		
D2	3.86	3.96	4.06	0.152	0.156	0.160		
D3	1.63	1.73	1.83	0.064	0.068	0.072		
е		1.27 BSC			0.050 BSC			
E	6.05	6.15	6.25	0.238	0.242	0.246		
E1	4.27	4.37	4.47	0.168	0.172	0.176		
E2	2.75	2.85	2.95	0.108	0.112	0.116		
E3	6.05	6.22	6.40	0.238	0.245	0.252		
F	-	-	0.15	-	-	0.006		
L	0.62	0.72	0.82	0.024	0.028	0.032		
L1	0.92	1.07	1.22	0.036	0.042	0.048		
К		0.51			0.020			
W		0.23			0.009			
W1	0.41			0.016				
W2		2.82			0.111			
W3		2.96			0.117			
θ	0°	-	10°	0°	-	10°		

Note

• Millimeters will govern

RECOMMENDED MINIMUM PAD FOR PowerPAK® SO-8L DUAL

Recommended Minimum Pads Dimensions in mm (inches) Keep-out 6.75 (0.266) x 7.75 (0.305)

Revision: 07-Feb-12

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2025 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2025

1