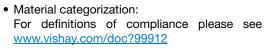


N- and P-Channel 100 V (D-S) MOSFET

PRODUCT SUMMARY							
	V _{DS} (V)	R _{DS(on)} (Ω) MAX.	I _D (A) ^a	Q _g (TYP.)			
N-Channel	100	0.057 at V _{GS} = 10 V	5.6	1			
		0.072 at $V_{GS} = 4.5 \text{ V}$	5	4			
P-Channel	-100	0.183 at V _{GS} = -10 V	-3.4	11.6			
r-Chaine	-100	0.205 at $V_{GS} = -4.5 \text{ V}$	-3.2	11.0			

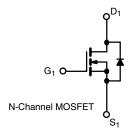


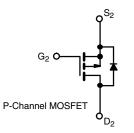
Ordering Information:

Si4590DY-T1-GE3 (Lead (Pb)-free and Halogen-free)

FEATURES

- TrenchFET® Power MOSFET
- 100 % R_g and UIS tested





ROHS COMPLIANT HALOGEN FREE

APPLICATIONS

- H bridge / DC-AC inverter
 - Brushless DC motors

PARAMETER	SYMBOL	N-CHANNEL	P-CHANNEL	UNIT		
Drain-Source Voltage	V _{DS}	100	-100	V		
Gate-Source Voltage	V_{GS}	±	V			
	T _F = 25 °C		5.6	-3.4		
Continuous Duais Courset /T 150 °C	T _F = 70 °C] ,	4.5	-2.7		
Continuous Drain Current (T _J = 150 °C)	T _A = 25 °C	- I _D	4.5 b,c	-2.5 b,c		
	T _A = 70 °C		3.6 b,c	-2 b,c		
Pulsed Drain Current (100 µs Pulse Width)	I _{DM}	30	-20	Α		
Source-Drain Current Diode Current	T _F = 25 °C	- I _S	3	-3.5		
Source-Drain Current Diode Current	T _A = 25 °C		2 b,c	-1.9 ^{b,c}		
Pulsed Source-Drain Current (100 µs Pulse Wid	I _{SM}	30	-20			
Single Pulse Avalanche Current		I _{AS}	5	-20		
Single Pulse Avalanche Energy	L = 0.1 mH	E _{AS}	1.3	20	mJ	
	T _F = 25 °C		3.6	4.2		
Mayimum Dawar Dissination	T _F = 70 °C	P _D	2.3	2.7	W	
Maximum Power Dissipation	T _A = 25 °C		2.3 b,c	2.3 b,c	VV	
	T _A = 70 °C	1	1.5 b,c	1.5 ^{b,c}		
Operating Junction and Storage Temperature R	T _J , T _{stg}	-55 to 150		°C		

THERMAL RESISTANCE RATINGS								
PARAMETER	SYMBOL	N-CHANNEL		P-CHANNEL		UNIT		
PARAIVIETER		TYP.	MAX.	TYP.	MAX.	ONII		
Maximum Junction-to-Ambient ^{b,d} t ≤ 10 s		R _{thJA}	35	55	33	55	°C/W	
Maximum Junction-to-Foot (Drain)	Steady State	R _{thJF}	20	35	17	30	C/VV	

Notes

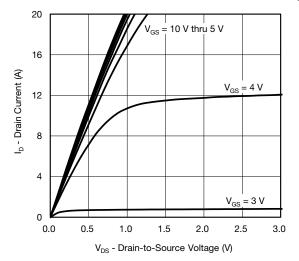
- a. Based on $T_F = 25$ °C.
- b. Surface mounted on 1" x 1" FR4 board.
- c. t = 10 s
- d. Maximum under steady state conditions is 90 °C/W (n-channel) and 90 °C/W (p-channel).

Vishay Siliconix

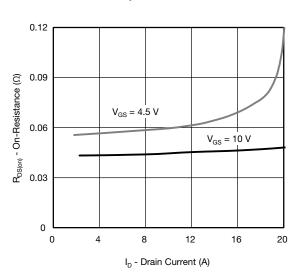
PARAMETER	SYMBOL	SYMBOL TEST CONDITIONS				MAX.	UNIT	
Static				L				
D : 0 D 1 W		$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	N-Ch	100	-	-	V	
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	P-Ch	-100	-	-		
V. Tananani a Osaffaisai		I _D = 250 μA	N-Ch	-	70	-	mV/°C	
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	I _D = -250 μA	P-Ch	-	-103	-		
V Temperature Coefficient	A)/ /T	I _D = 250 μA	N-Ch	-	-5.7	-		
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	I _D = -250 μA	P-Ch	-	4.5	-		
Gate Threshold Voltage		$V_{DS} = V_{GS}, I_D = 250 \mu A$	N-Ch	1.5	-	2.5	V	
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = -250 \mu A$	P-Ch	-1.5	-	-2.5		
Gate-Body Leakage	l	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$	N-Ch	-	-	100	nΛ	
Gale-Body Leakage	I _{GSS}	$v_{DS} = 0 v, v_{GS} = \pm 20 v$	P-Ch	-	-	-100	- nA	
		$V_{DS} = 100 \text{ V}, V_{GS} = 0 \text{ V}$	N-Ch	-	-	1		
Zoro Cata Valtaga Drain Current		V _{DS} = -100 V, V _{GS} = 0 V	P-Ch	-	-	-1	- μA	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 100 V, V _{GS} = 0 V, T _J = 55 °C	N-Ch	-	-	10		
		V _{DS} = -100 V, V _{GS} = 0 V, T _J = 55 °C	P-Ch	-	-	-10		
On-State Drain Current ^b	I _{D(on)}	V _{DS} = 5 V, V _{GS} = 10 V	N-Ch	10	-	-	А	
		$V_{DS} = -5 \text{ V}, V_{GS} = -10 \text{ V}$	P-Ch	-10	-	-		
	R _{DS(on)}	V _{GS} = 10 V, I _D = 2 A	N-Ch	-	0.047	0.057		
Drain-Source On-State Resistance b		$V_{GS} = -10 \text{ V}, I_D = -2 \text{ A}$	P-Ch	-	0.150	0.183		
		$V_{GS} = 4.5 \text{ V}, I_D = 1.5 \text{ A}$	N-Ch	-	0.059	0.072	Ω	
		$V_{GS} = -4.5 \text{ V}, I_D = -1 \text{ A}$	P-Ch	-	0.165	0.205		
Farmered Transport and the base h		$V_{DS} = 15 \text{ V}, I_D = 2 \text{ A}$	N-Ch	-	9	-	S	
Forward Transconductance b	9 _{fs}	V _{DS} = -15 V, I _D = -2 A	P-Ch	-	9.3	-		
Dynamic ^a					•	•		
Input Canacitance	C.		N-Ch	-	360	-	pF	
Input Capacitance	C _{iss}	N-Channel	P-Ch	-	1150	-		
Output Capacitance	-	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	N-Ch	-	130	-		
Output Capacitance	C _{oss}	P-Channel	P-Ch	-	65	-		
Deverage Transfer Conscitones	C _{rss}	$V_{DS} = -50 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	N-Ch	-	20	-		
Reverse Transfer Capacitance			P-Ch	-	40	-		
		V _{DS} = 50 V, V _{GS} = 10 V, I _D = 4.5 A	N-Ch	-	7.5	11.5	nC	
Tatal Cata Chausa		$V_{DS} = -50 \text{ V}, V_{GS} = -10 \text{ V}, I_D = -5 \text{ A}$	P-Ch	-	24	36		
Total Gate Charge	Qg		N-Ch	-	4	6		
		N-Channel	P-Ch	-	11.6	18		
Oala Oa was Obassa	Q_{gs}	$V_{DS} = 50 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 4.5 \text{ A}$	N-Ch	-	1.2	-		
Gate-Source Charge		P-Channel	P-Ch	-	3.8	-		
Octo Ducio Chause		$V_{DS} = -50 \text{ V}, V_{GS} = -4.5 \text{ V}, I_D = -5 \text{ A}$	N-Ch	-	2	-		
Gate-Drain Charge	Q_{gd}		P-Ch	-	5	-		
0.1.5			N-Ch	0.6	3.3	6.6	_	
Gate Resistance	R_g	f = 1 MHz	P-Ch	3	13	26	Ω	

www.vishay.com

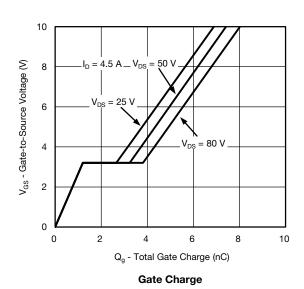
Vishay Siliconix

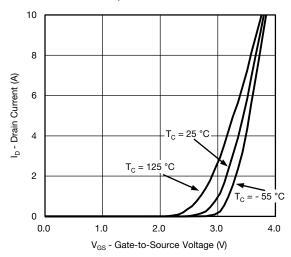

PARAMETER	SYMBOL TEST CONDITIONS			MIN.	TYP.	MAX.	UNIT
Dynamic ^a	•					•	,
Turn-On Delay Time	† ₁₁ .		N-Ch	-	5	10	
Turn On Belay Time	t _{d(on)}	N-Channel	P-Ch	-	7	15	
Rise Time	t _r	$V_{DD} = 50 \text{ V}, R_L = 13.8 \Omega$	N-Ch	-	11	20	
1100 11110		$I_D\cong 3.6$ A, $V_{GEN}=10$ V, $R_g=1$ Ω	P-Ch	-	11	20	
Turn-Off Delay Time	t _{d(off)}	P-Channel	N-Ch	-	12	25	
	u(on)	$V_{DD} = -50 \text{ V}, R_L = 12.5 \Omega$ $I_D \cong -4 \text{ A}, V_{GEN} = -10 \text{ V}, R_q = 1 \Omega$	P-Ch	-	65	130	
Fall Time	t _f	.b =, .dEN,g	N-Ch	-	6	15	
			P-Ch	-	20	40	ns
Turn-On Delay Time	t _{d(on)}		N-Ch	-	32	65	
·	-u(on)	N-Channel	P-Ch	=.	55	110	
Rise Time	t _r	V_{DD} = 50 V, R_L = 13.8 Ω $I_D \cong$ 3.6 A, V_{GEN} = 4.5 V, R_q = 1 Ω	N-Ch	-	73	150	
		-	P-Ch	-	80	160	
Turn-Off Delay Time	t _{d(off)}	P-Channel $V_{DD} = -50 \text{ V}, R_L = 12.5 \Omega$	N-Ch P-Ch		14	30	
		$I_D \cong -4 \text{ A}, V_{GEN} = -4.5 \text{ V}, R_g = 1 \Omega$	N-Ch	-	42 12	85 25	
Fall Time	t _f			-	25	50	-
Drain-Source Body Diode Characteristi	rs		P-Ch		20	30	
Drain Course Body Brode Orial deterrior	1		N-Ch	T -	l <u>-</u>	3	<u> </u>
Continuous Source-Drain Diode Current	I _S	T _F = 25 °C	P-Ch	-	-	-3.5	
			N-Ch	_	-	30	Α
Pulse Diode Forward Current ^a	I _{SM}		P-Ch	-	-	-20	1
	V _{SD}	I _S = 3.6 A	N-Ch	-	0.83	1.2	
Body Diode Voltage		I _S = -4 A	P-Ch	-	-0.8	-1.2	V
	t _{rr}		N-Ch	-	30	60	
Body Diode Reverse Recovery Time			P-Ch	-	42	85	ns
Pady Diada Payaraa Passyary Charry	Q _{rr}	N-Channel	N-Ch	-	27	55	r.C
Body Diode Reverse Recovery Charge		$I_F = 3.6 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 \text{ °C}$	P-Ch	=.	93	190	nC
Reverse Recovery Fall Time	t _a	P-Channel	N-Ch	-	19	-	
Heverse Hecovery Fall Tillle		$I_F = -4 \text{ A}, \text{ dI/dt} = -100 \text{ A/}\mu\text{s}, T_J = 25 °\text{C}$	P-Ch	-	36	-	ns
Reverse Recovery Rise Time	t _b		N-Ch	-	11	-	
Tiovordo Ficoovery Filide Tillife			P-Ch	-	6	-	

Notes

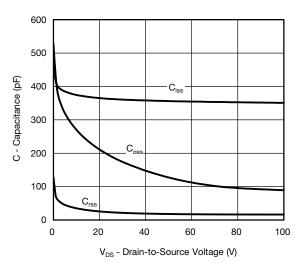

- a. Guaranteed by design, not subject to production testing.
- b. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

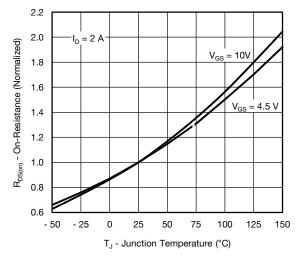




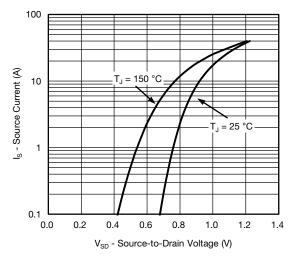
Output Characteristics

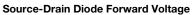


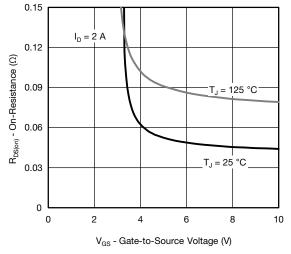
On-Resistance vs. Drain Current and Gate Voltage



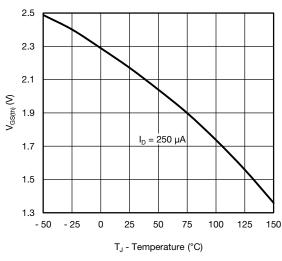
Transfer Characteristics

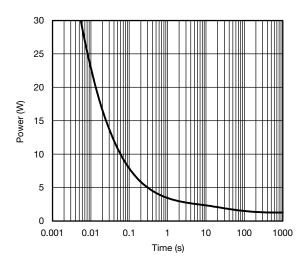


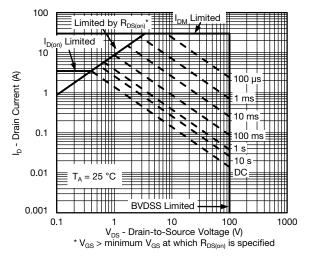

Capacitance



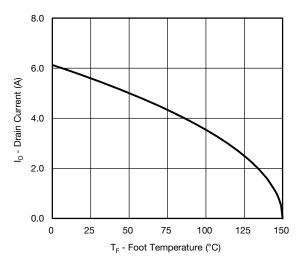
On-Resistance vs. Junction Temperature



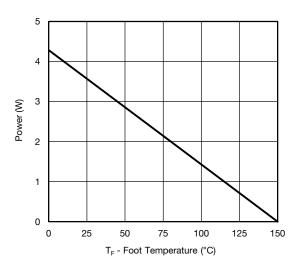



On-Resistance vs. Gate-to-Source Voltage

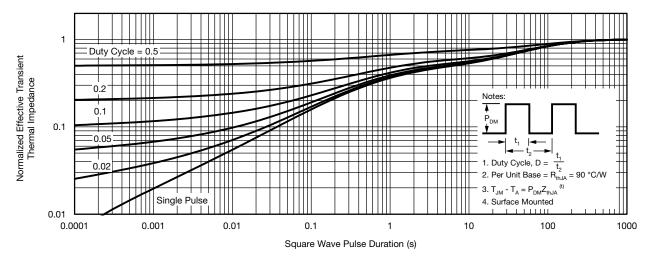
Threshold Voltage

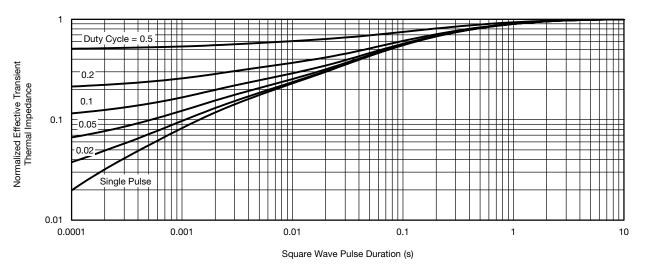


Single Pulse Power, Junction-to-Ambient

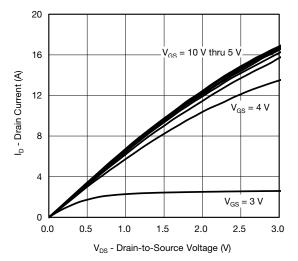


Safe Operating Area, Junction-to-Ambient

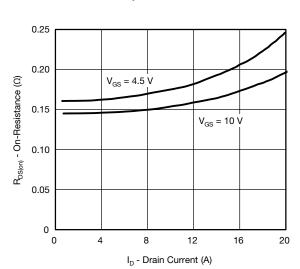

Current Derating*


Power Derating, Junction-to-Foot

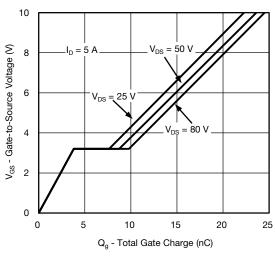
^{*} The power dissipation P_D is based on $T_{J(max.)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

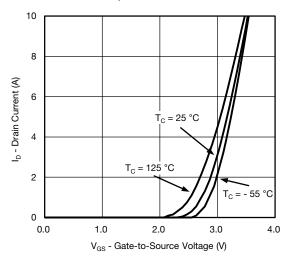


Normalized Thermal Transient Impedance, Junction-to-Ambient

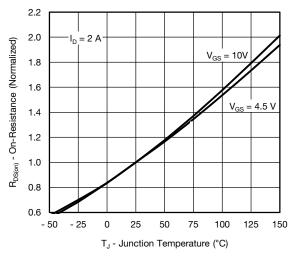


Normalized Thermal Transient Impedance, Junction-to-Foot

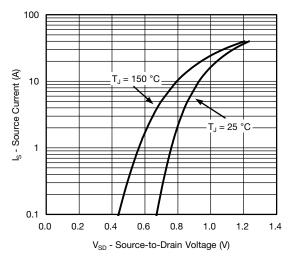


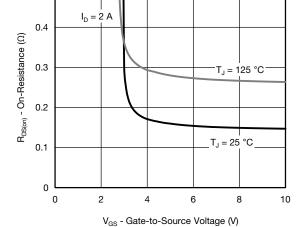

Output Characteristics

On-Resistance vs. Drain Current and Gate Voltage

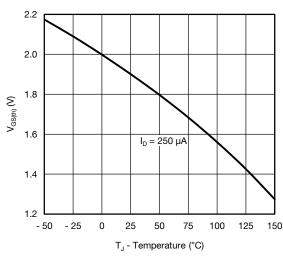

Gate Charge

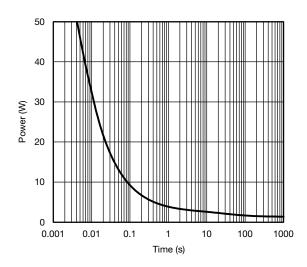
Transfer Characteristics



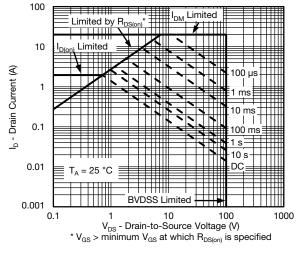

Capacitance

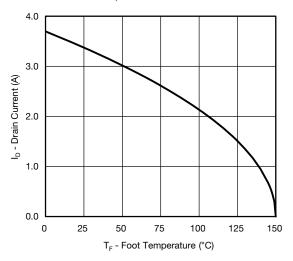
On-Resistance vs. Junction Temperature



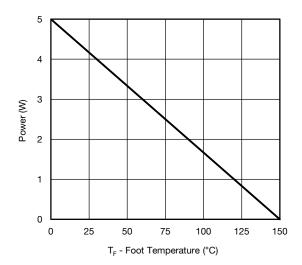


Source-Drain Diode Forward Voltage

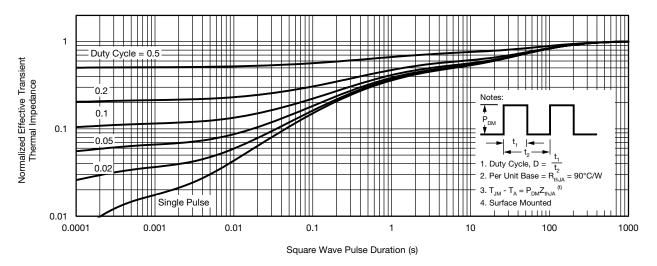

On-Resistance vs. Gate-to-Source Voltage

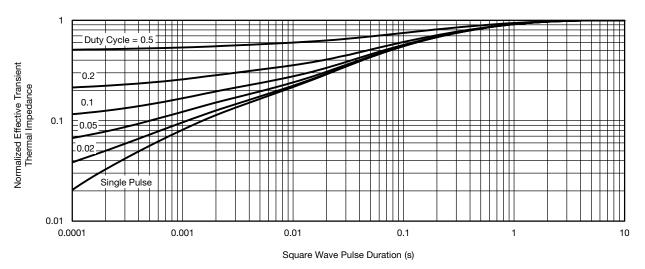


Threshold Voltage


Single Pulse Power, Junction-to-Ambient

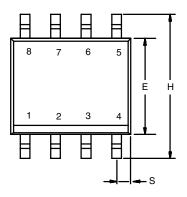
Safe Operating Area, Junction-to-Ambient

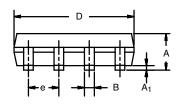

Current Derating*

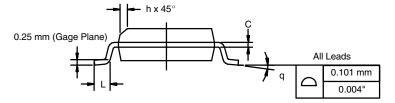

Power Derating, Junction-to-Foot

^{*} The power dissipation PD is based on TJ(max.) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

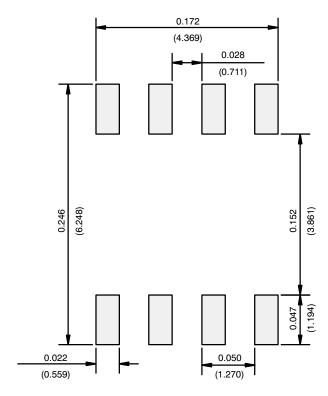
Normalized Thermal Transient Impedance, Junction-to-Ambien




Normalized Thermal Transient Impedance, Junction-to-Foot


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg262937.

SOIC (NARROW): 8-LEAD JEDEC Part Number: MS-012


	MILLIM	IETERS	INCHES				
DIM	Min	Max	Min	Max			
Α	1.35	1.75	0.053	0.069			
A ₁	0.10	0.20	0.004	0.008			
В	0.35	0.51	0.014	0.020			
С	0.19	0.25	0.0075	0.010			
D	4.80	5.00	0.189	0.196			
Е	3.80	4.00	0.150	0.157			
е	1.27	BSC	0.050 BSC				
Н	5.80	6.20	0.228	0.244			
h	0.25	0.50	0.010	0.020			
L	0.50	0.93	0.020	0.037			
q	0°	8°	0°	8°			
S	0.44	0.64	0.018	0.026			
ECN: C-06527-Rev. I. 11-Sep-06							

DWG: 5498

Document Number: 71192 www.vishay.com 11-Sep-06

RECOMMENDED MINIMUM PADS FOR SO-8

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Ш

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.