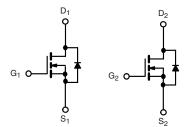

SQJ970EP

Vishay Siliconix

Automotive Dual N-Channel 40 V (D-S) 175 °C MOSFET

PRODUCT SUMMARY			
V _{DS} (V)	40		
$R_{DS(on)} (\Omega)$ at $V_{GS} = 10 V$	0.020		
$R_{DS(on)} (\Omega)$ at $V_{GS} = 4.5 V$	0.028		
I _D (A) per leg	8		
Configuration	Dual		



FEATURES

- Halogen-free According to IEC 61249-2-21
 Definition
- TrenchFET[®] Power MOSFET
- AEC-Q101 Qualified^d
- 100 % R_g and UIS Tested
- Compliant to RoHS Directive 2002/95/EC

RoHS COMPLIANT HALOGEN FREE

N-Channel MOSFET N-Channel MOSFET

ORDERING INFORMATION	
Package	PowerPAK SO-8L
Lead (Pb)-free and Halogen-free	SQJ970EP-T1-GE3

PARAMETER		SYMBOL	LIMIT	UNIT	
Drain-Source Voltage		V _{DS}	40	N/	
Gate-Source Voltage		V _{GS}	± 20	V	
Continuous Drain Current ^a	T _C = 25 °C	1	8		
	T _C = 125 °C	I _D	8		
Continuous Source Current (Diode Conduction) ^a		I _S	8	А	
Pulsed Drain Current ^b		I _{DM}	32		
Single Pulse Avalanche Current	L = 0.1 mH	I _{AS}	28		
Single Pulse Avalanche Energy		E _{AS}	39	mJ	
Maximum Power Dissipation ^b	T _C = 25 °C	D	48	w	
	T _C = 125 °C	P _D	16		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to + 175	°C	
Soldering Recommendations (Peak Temperature) ^{e, f}			260		

THERMAL RESISTANCE RATINGS				
PARAMETER		SYMBOL	LIMIT	UNIT
Junction-to-Ambient	PCB Mount ^c	R _{thJA}	85	°C/W
Junction-to-Case (Drain)		R _{thJC}	3.1	C/ W

Notes

f. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components.

a. Package limited.

b. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.

c. When mounted on 1" square PCB (FR4 material).

d. Parametric verification ongoing.

e. See solder profile (<u>www.vishay.com/doc?73257</u>). The PowerPAK SO-8L. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

www.vishay.com

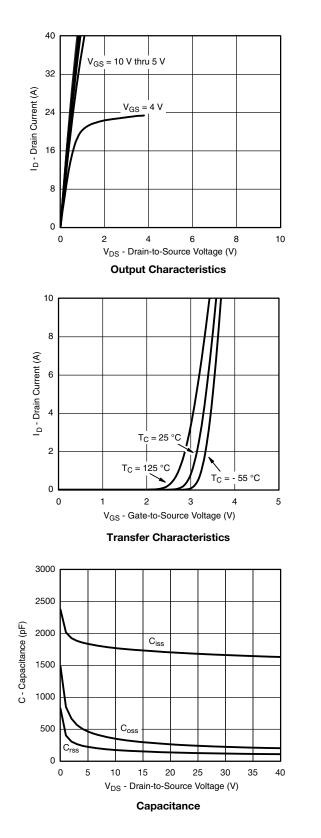
SQJ970EP Vishay Siliconix

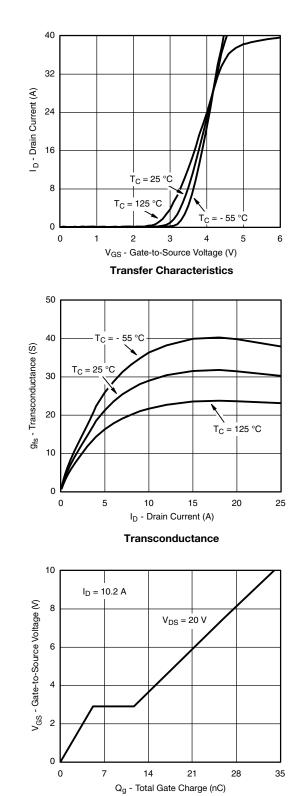
Static Vois $V_{GS} = 0$, $I_D = 250 \ \mu A$ 40 - - Gate-Source Threshold Voltage $V_{GS}(\mu)$ $V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$ 1.5 2.0 2.5 Gate-Source Threshold Voltage I_{GSS} $V_{DS} = 0 V$, $V_{DS} = 40 V$ - - ± 100 Zero Gate Voltage Drain Current I_{DSS} $V_{GS} = 0 V$ $V_{DS} = 40 V$, $T_u = 125 \ ^{\circ}C$ - 1 On-State Drain Current ^a $I_{D(en)}$ $V_{GS} = 10 V$ $V_{DS} = 40 V$, $T_u = 175 \ ^{\circ}C$ - 150 On-State Drain Current ^a $I_{D(en)}$ $V_{GS} = 10 V$ $V_{DS} = 40 V$, $T_u = 175 \ ^{\circ}C$ - 0.016 0.020 Drain-Source On-State Resistance ^a $P_{DS(on)$ $V_{GS} = 10 V$ $I_D = 10.2 A$ - 0.022 0.028 Porturator $V_{GS} = 10 V$ $I_D = 10.2 A$, $T_u = 175 \ ^{\circ}C$ - 0.029 0.036 Forward Transconductance ^b g_{16} $V_{DS} = 10 V$ $I_D = 10.2 A$, $T_u = 175 \ ^{\circ}C$ - 0.029 0.036 Fourard Transconductance C_{15S} $V_{DS} = 10 $	PARAMETER	SYMBOL	TES	ST CONDITIONS	MIN.	TYP.	MAX.	UNIT
$ \begin{array}{c c c c c c c } \hline Gate-Source Threshold Voltage $V_{GS(th)}$ & V_{DS} = V_{GS}, I_{D} = 250 \ \mu A & 1.5 & 2.0 & 2.5 \\ \hline Gate-Source Leakage & I_{GSS} & V_{DS} = 0 \ V, V_{GS} = 20 \ V & - & - & \pm 100 \\ \hline V_{GS} = 0 \ V & V_{DS} = 40 \ V & - & - & 1 \\ \hline V_{GS} = 0 \ V & V_{DS} = 40 \ V, T_{J} = 125 \ C & - & - & 50 \\ \hline V_{GS} = 0 \ V & V_{DS} = 40 \ V, T_{J} = 125 \ C & - & - & 50 \\ \hline V_{GS} = 0 \ V & V_{DS} = 40 \ V, T_{J} = 125 \ C & - & - & 50 \\ \hline V_{GS} = 0 \ V & V_{DS} = 40 \ V, T_{J} = 125 \ C & - & - & 50 \\ \hline V_{GS} = 0 \ V & V_{DS} = 40 \ V, T_{J} = 125 \ C & - & - & 50 \\ \hline V_{GS} = 10 \ V & V_{DS} = 50 \ V \ V_{DS} = 50 \ V \ V_{DS} = 50 \ V \ V_{DS} = 0 \ V \ V_{DS} = 50 \ V \ V_{DS} = 0 \ V \ V_{DS} = 50 \ V \ V_{DS} = 0 \ V \ V_$	Static							<u> </u>
$ \begin{split} \begin{tabular}{ c c c c } \hline Gate-Source Leakage & I_{GSS} & V_{DS} = 0 \lor, V_{GS} = \pm 20 \lor, V_{GS} = \pm 20 \lor, V_{GS} = 40 \lor, V_{GS} = 10 \lor, V_{DS} = 5 \lor, V_{GS} = 10 \lor, V_{DS} = 20 \lor, V_{DS} = 10 \lor, V_{DS} = 10 \lor, V_{DS} = 10 \lor, V_{DS} = 10 \lor, V_{DS} = 20 \lor, V_{DS} = 10 \lor, V_{DS} = 20 \lor, V_{DS} = 10 \lor, V_$	Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0, I_D = 250 \ \mu A$		40	-	-	v
$ \begin{array}{ c c c c c } \hline \mbox{V} \mbox{V} \mbox{S} = 0 \ V & V_{DS} = 40 \ V & - & - & 1 \\ \hline \mbox{V} \mbox{S} = 0 \ V & V_{DS} = 40 \ V, \ \mbox{J} = 125 \ \mbox{C} & - & - & 50 \\ \hline \mbox{V} \mbox{V} \mbox{S} = 0 \ V & V_{DS} = 40 \ V, \ \mbox{J} = 125 \ \mbox{C} & - & - & 150 \\ \hline \mbox{V} \mbox{S} = 0 \ V & V_{DS} = 40 \ V, \ \mbox{J} = 175 \ \mbox{C} & - & - & 150 \\ \hline \mbox{V} \mbox{S} = 0 \ V & V_{DS} = 40 \ V, \ \mbox{J} = 175 \ \mbox{C} & - & - & 150 \\ \hline \mbox{V} \mbox{S} = 10 \ V & V_{DS} = 5 \ V & 30 & - & - & - & - & - & - & - & - & - & $	Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} =	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$		2.0	2.5	
$ \begin{array}{ c c c c c c } \hline Zero Gate Voltage Drain Current & I_{DSS} & V_{GS} = 0 V & V_{DS} = 40 V, T_J = 125 \ ^{\circ}C & - & - & 50 \\ \hline V_{GS} = 0 V & V_{DS} = 40 V, T_J = 175 \ ^{\circ}C & - & - & 150 \\ \hline V_{GS} = 0 V & V_{DS} \geq 5 V & 30 & - & - & 150 \\ \hline V_{GS} = 10 V & V_{DS} \geq 5 V & 30 & - & - & 0.016 & 0.020 \\ \hline V_{GS} = 10 V & I_D = 10.2 \ ^{\circ}A & - & 0.016 & 0.020 \\ \hline V_{GS} = 10 V & I_D = 10.2 \ ^{\circ}A & - & 0.022 & 0.028 \\ \hline V_{GS} = 10 V & I_D = 10.2 \ ^{\circ}A & - & 0.022 & 0.028 \\ \hline V_{GS} = 10 V & I_D = 10.2 \ ^{\circ}A & - & 0.022 & 0.028 \\ \hline V_{GS} = 10 V & I_D = 10.2 \ ^{\circ}A & - & 0.022 & 0.028 \\ \hline V_{GS} = 10 V & I_D = 10.2 \ ^{\circ}A & - & 0.025 & 0.031 \\ \hline V_{GS} = 10 V & I_D = 10.2 \ ^{\circ}A & - & 28 & - \\ \hline Dummic^{\circ} & V_{GS} = 10 V & I_D = 10.2 \ ^{\circ}A & - & 28 & - \\ \hline Dummic^{\circ} & V_{GS} = 10 V & I_D = 10.2 \ ^{\circ}A & - & 28 & - \\ \hline Dummic^{\circ} & V_{GS} = 10 V & I_D = 10.2 \ ^{\circ}A & - & 28 & - \\ \hline Dumic^{\circ} & V_{GS} = 10 V & I_D = 10.2 \ ^{\circ}A & - & 28 & - \\ \hline Dumic^{\circ} & V_{GS} = 0 V & V_{DS} = 20 \ ^{\circ}V, \ ^{\circ}I = 1 \ ^{\circ}MHz & - & 260 \ ^{\circ}325 \ ^{\circ} & - & 130 \ ^{\circ}I65 \ ^{\circ} & - & 0.022 \ ^{\circ}I65 \ ^{\circ} & - & 0.022 \ ^{\circ}I65 \ ^{\circ$	Gate-Source Leakage	I _{GSS}	V _{DS} =	$V_{DS} = 0 V, V_{GS} = \pm 20 V$		-	± 100	nA
$ \begin{array}{ c c c c c c c } \hline V_{GS} = 0 & V & V_{DS} = 40 & V, \ T_J = 175 \ ^{\circ} C & - & - & 150 \\ \hline V_{GS} = 0 & V & V_{DS} \geq 5 & 30 & - & - & \\ \hline V_{GS} = 10 & V & V_{DS} \geq 5 & 30 & - & - & \\ \hline V_{GS} = 10 & V & I_D = 10.2 & A & - & 0.016 & 0.020 \\ \hline V_{GS} = 4.5 & I_D = 10.2 & A & - & 0.022 & 0.028 \\ \hline V_{GS} = 10 & V & I_D = 10.2 & A, \ T_J = 125 \ ^{\circ} C & - & 0.025 & 0.031 \\ \hline V_{GS} = 10 & V & I_D = 10.2 & A, \ T_J = 125 \ ^{\circ} C & - & 0.029 & 0.036 \\ \hline Forward Transconductance^b & g_{fS} & V_{DS} = 15 & V, \ I_D = 10.2 & A, \ T_J = 175 \ ^{\circ} C & - & 0.029 & 0.036 \\ \hline Forward Transconductance & C_{ISS} & V_{DS} = 15 & V, \ I_D = 10.2 & A, \ T_J = 175 \ ^{\circ} C & - & 0.029 & 0.036 \\ \hline Output Capacitance & C_{ISS} & V_{DS} = 15 & V, \ I_D = 10.2 & A & - & 28 & - \\ \hline Dynamic^b & & & & \\ \hline Input Capacitance & C_{ISS} & V_{OS} = 0 & V_{DS} = 20 & V, \ f = 1 & MHz & - & 260 & 325 \\ \hline Reverse Transfer Capacitance & C_{rss} & V_{OS} = 10 & V_{DS} = 20 & V, \ f = 1 & MHz & - & 34 & 55 \\ \hline Gate - Drain Charge^{\circ} & Q_{gd} & V_{GS} = 10 & V_{DS} = 20 & V, \ I_D = 10.2 & A & - & 5.2 & - \\ \hline Gate Resistance & R_g & f = 1 & MHz & 0.71 & 3.92 & 7.12 \\ \hline Turn-On Delay Time^{\circ} & t_{d(ori)} & V_{OD} = 20 & V, \ R_L = 20 & \Omega \\ \hline I_D \equiv 1 & A, \ V_{GS} = 10 & V, \ R_g = 1 & \Omega & 15 \\ \hline Source-Drain Diode Ratings and Characteristics^b \\ \hline Pulsed Current^a & I_{SM} & \hline \end{array}$			$V_{GS} = 0 V$	V _{DS} = 40 V	-	-	1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V$	V _{DS} = 40 V, T _J = 125 °C	-	-	50	μA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$V_{GS} = 0 V$	V _{DS} = 40 V, T _J = 175 °C	-	-	150	1
$ \begin{array}{ c c c c c } \label{eq:barrier} \begin{tabular}{ c c c c c } \hline Pair Pair Pair Pair Pair Pair Pair Pair$	On-State Drain Current ^a	I _{D(on)}	$V_{GS} = 10 V$	$V_{DS} \ge 5 V$	30	-	-	Α
$ \begin{array}{ c c c c c c } \hline Prain-Source On-State Resistance^a & $P_{DS(on)}$ & $V_{GS} = 10 \ V$ & $I_D = 10.2 \ A, $T_J = 125 \ ^{\circ}C$ & $-$ & $0.025 & 0.031 \\ \hline $V_{GS} = 10 \ V$ & $I_D = 10.2 \ A, $T_J = 175 \ ^{\circ}C$ & $-$ & $0.029 & 0.036 \\ \hline $V_{GS} = 10 \ V$ & $I_D = 10.2 \ A, $T_J = 175 \ ^{\circ}C$ & $-$ & $0.029 & 0.036 \\ \hline $V_{GS} = 10 \ V$ & $I_D = 10.2 \ A, $T_J = 175 \ ^{\circ}C$ & $-$ & $0.029 & 0.036 \\ \hline $Dynamic^b$ & $V_{DS} = 15 \ V, $I_D = 10.2 \ A, $T_J = 175 \ ^{\circ}C$ & $-$ & $0.029 & 0.036 \\ \hline $Dynamic^b$ & $V_{DS} = 15 \ V, $I_D = 10.2 \ A$ & $-$ & 28 & $-$ \\ \hline $Dynamic^b$ & $V_{DS} = 10 \ V$ \\ \hline $V_{GS} = 0 \ V$ & $V_{DS} = 20 \ V, $f = 1 \ MHz$ & $-$ & 26 & $-$ & 130 & 165 \\ \hline $-$ & 10 & 15 \\ \hline $-$ & 10 &$	Drain-Source On-State Resistance ^a		$V_{GS} = 10 V$	I _D = 10.2 A	-	0.016	0.020	Ω
$ \begin{array}{ c c c c c c } \hline V_{GS} = 10 \ V & I_D = 10.2 \ A, \ I_J = 125 \ C & - & 0.025 & 0.031 \\ \hline V_{GS} = 10 \ V & I_D = 10.2 \ A, \ I_J = 125 \ C & - & 0.029 & 0.036 \\ \hline V_{GS} = 10 \ V & I_D = 10.2 \ A, \ I_J = 175 \ C & - & 0.029 & 0.036 \\ \hline Prive Transconductance^h & g_{fs} & V_{DS} = 15 \ V, \ I_D = 10.2 \ A, \ I_J = 175 \ C & - & 28 & - \\ \hline Dynamic^h & & & & & & & & & & & & & & & & \\ \hline Dynamic^b & & & & & & & & & & & & & & & & & & &$			$V_{GS} = 4.5 V$	I _D = 8.7 A	-	0.022	0.028	
$ \begin{array}{ c c c c c c } \hline Forward Transconductance^b & g_{fs} & V_{DS} = 15 \ V, \ I_D = 10.2 \ A & - & 28 & - \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		RDS(on)	$V_{GS} = 10 \text{ V}$	I _D = 10.2 A, T _J = 125 °C	-	0.025	0.031	
$ \begin{array}{ c c c c c c c c } \hline \textbf{Dynamic}^b & & & & & & & & & & & & & & & & & & &$			$V_{GS} = 10 V$	I _D = 10.2 A, T _J = 175 °C	-	0.029	0.036	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Forward Transconductanceb	9 _{fs}	V _{DS} =	= 15 V, I _D = 10.2 A	-	28	-	S
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynamic ^b							
$\begin{array}{ c c c c c c c } \hline Reverse Transfer Capacitance & C_{rss} & & & & & & & & & & & & & & & & & & $	Input Capacitance	C _{iss}		V _{DS} = 20 V, f = 1 MHz	-	1730	2165	pF
$ \begin{array}{ c c c c c } \hline Total Gate Charge^c & Q_g & \\ \hline Gate-Source Charge^c & Q_{gs} & \\ \hline Gate-Drain Charge^c & Q_{gd} & \\ \hline Gate-Drain Charge^c & Q_{gd} & \\ \hline Gate Resistance & R_g & \\ \hline Turn-On Delay Time^c & It_{d(on)} & \\ \hline Rise Time^c & t_r & \\ \hline Turn-Off Delay Time^c & t_{d(off)} & \\ \hline Fall Time^c & t_f & \\ \hline Fall Time^c & t_f & \\ \hline Source-Drain Diode Ratings and Characteristics^b & \\ \hline Pulsed Current^a & I_{SM} & \\ \hline \end{array} \\ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Output Capacitance	C _{oss}	$V_{GS} = 0 V$		-	260	325	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Reverse Transfer Capacitance	C _{rss}			-	130	165	
$ \begin{array}{ c c c c c c c } \hline Gate-Drain Charge^c & Q_{gd} & & & & & & & & & & & & & & & & & & &$	Total Gate Charge ^c	Qg		V _{DS} = 20 V, I _D = 10.2 A	-	34	55	nC
$ \begin{array}{c c c c c c c c c } \hline Gate Resistance & R_g & f = 1 \ \text{MHz} & 0.71 & 3.92 & 7.12 \\ \hline Turn-On \ Delay \ Time^c & t_{d(on)} & & & & & & & & & & & & & & & & & & &$	Gate-Source Charge ^c	Q _{gs}	$V_{GS} = 10 V$		-	5.2	-	
$\begin{tabular}{ c c c c c } \hline Turn-On Delay Time^{C} & t_{d(on)} \\ \hline Rise Time^{C} & t_{r} & \\ \hline Turn-Off Delay Time^{C} & t_{d(off)} & \\ \hline Fall Time^{C} & t_{f} & \\ \hline \hline Source-Drain Diode Ratings and Characteristics^{b} & \\ \hline Pulsed Current^{a} & I_{SM} & \\ \hline \hline \end{tabular} & $	Gate-Drain Charge ^c	Q _{gd}			-	6.5	-	
Rise Time ^c t_r $V_{DD} = 20 \text{ V}, \text{ R}_L = 20 \Omega$ $ 8$ 12 Turn-Off Delay Time ^c $t_{d(off)}$ $I_D \cong 1 \text{ A}, \text{ V}_{GEN} = 10 \text{ V}, \text{ R}_g = 1 \Omega$ $ 50$ 75 Fall Time ^c t_f $ 10$ 15 Pulsed Current ^a I_{SM} $ 32$	Gate Resistance	Rg	f = 1 MHz		0.71	3.92	7.12	Ω
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Turn-On Delay Time ^c	t _{d(on)}			-	10	15	
Fall Time ^c t _f - 10 15 Source-Drain Diode Ratings and Characteristics ^b - - 32 Pulsed Current ^a I _{SM} - - 32	Rise Time ^c				-	8	12	- ns
Source-Drain Diode Ratings and Characteristics ^b Pulsed Current ^a I _{SM} - - 32	Turn-Off Delay Time ^c	t _{d(off)}			-	50	75	
Pulsed Current ^a I _{SM} 32	Fall Time ^c	t _f			-	10	15	
	Source-Drain Diode Ratings and Char	acteristics ^b				•		
Forward Voltage V_{SD} $I_F = 2.9 \text{ A}, V_{GS} = 0$ - 0.8 1.1	Pulsed Current ^a	I _{SM}			-	-	32	Α
	Forward Voltage	V _{SD}	$I_F = 2.9 \text{ A}, V_{GS} = 0$		-	0.8	1.1	V

Notes

a. Pulse test; pulse width $\leq 300~\mu s,~duty~cycle \leq 2~\%.$

b. Guaranteed by design, not subject to production testing.


c. Independent of operating temperature.

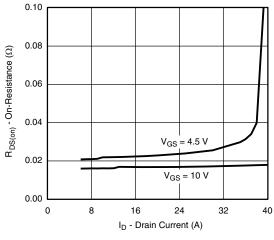

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Vishay Siliconix

TYPICAL CHARACTERISTICS ($T_A = 25 \text{ °C}$, unless otherwise noted)

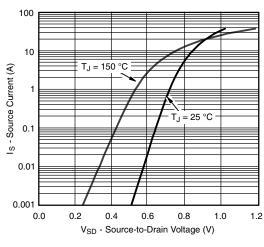
Gate Charge

S11-2419-Rev. C, 19-Dec-11

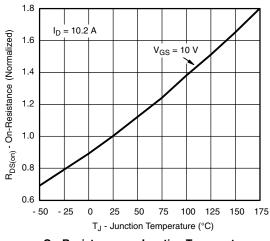

3

Document Number: 65282

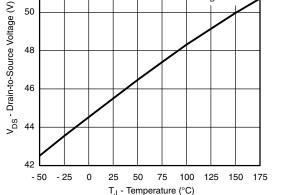
S11-2419-Rev. C, 19-Dec-11


THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)



www.vishay.com

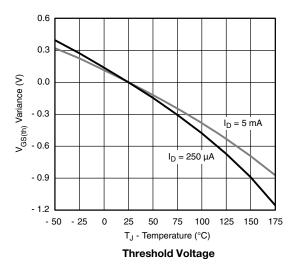

On-Resistance vs. Drain Current

Source Drain Diode Forward Voltage

On-Resistance vs. Junction Temperature


52

50


48

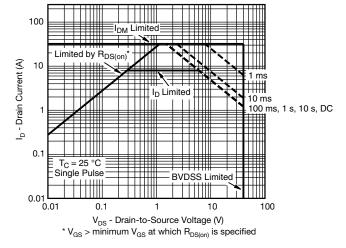
46

Drain-Source Breakdown vs. Junction Temperature

On-Resistance vs. Gate-to-Source Voltage

Document Number: 65282

SQJ970EP


Vishay Siliconix

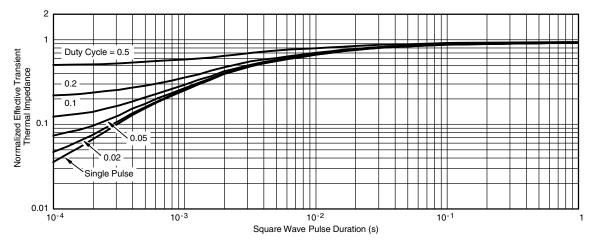
 $I_D = 1 \text{ mA}$



Vishay Siliconix

THERMAL RATINGS ($T_A = 25 \text{ °C}$, unless otherwise noted)

Safe Operating Area


Normalized Thermal Transient Impedance, Junction-to-Ambient

SQJ970EP

Vishay Siliconix

THERMAL RATINGS (T_A = 25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Case

Note

• The characteristics shown in the two graphs

- Normalized Transient Thermal Impedance Junction-to-Ambient (25 °C)

- Normalized Transient Thermal Impedance Junction-to-Case (25 °C)

are given for general guidelines only to enable the user to get a "ball park" indication of part capabilities. The data are extracted from single pulse transient thermal impedance characteristics which are developed from empirical measurements. The latter is valid for the part mounted on printed circuit board - FR4, size 1" x 1" x 0.062", double sided with 2 oz. copper, 100 % on both sides. The part capabilities can widely vary depending on actual application parameters and operating conditions.

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?65282.

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2025 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2025

1