Dual N-/Dual P-Channel 30-V (D-S) MOSFETs

PRODUCT SUMMARY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>N-Channel</th>
<th>P-Channel</th>
<th>Total Quad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltage</td>
<td>V_{DS}</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Gate-Source Voltage</td>
<td>V_{GS}</td>
<td>±20</td>
<td>±20</td>
<td></td>
</tr>
<tr>
<td>Continuous Drain Current (T_{J} = 150°C)</td>
<td>I_D</td>
<td>0.85</td>
<td>-0.6</td>
<td></td>
</tr>
<tr>
<td>Pulsed Drain Current</td>
<td>I_{DM}</td>
<td>3</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>P_D</td>
<td>1.3</td>
<td>1.3</td>
<td>2</td>
</tr>
<tr>
<td>Thermal Resistance, Junction-to-Ambient</td>
<td>R_{thJA}</td>
<td>96.2</td>
<td>96.2</td>
<td>62.5</td>
</tr>
</tbody>
</table>

FEATURES

- Low On-Resistance: 0.8/1.6 Ω
- Low Threshold: 1.5/–3.1 V
- Low Input Capacitance: 38/60 pF
- Fast Switching Speed: 9/16 ns
- Low Input and Output Leakage

BENEFITS

- Low Offset Voltage
- Low-Voltage Operation
- Easily Driven Without Buffer
- High-Speed Circuits
- Low Error Voltage

APPLICATIONS

- Direct Logic-Level Interface: TTL/CMOS
- Drivers: Relays, Solenoids, Lamps, Hammers, Displays, Memories, Transistors, etc.
- Battery Operated Systems
- Solid-State Relays

ABSOLUTE MAXIMUM RATINGS (T_{A} = 25°C UNLESS OTHERWISE NOTED)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Single</th>
<th>N-Channel</th>
<th>P-Channel</th>
<th>Total Quad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltage</td>
<td>V_{DS}</td>
<td></td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Gate-Source Voltage</td>
<td>V_{GS}</td>
<td></td>
<td>(±20)</td>
<td>(±20)</td>
<td></td>
</tr>
<tr>
<td>Continuous Drain Current (T_{J} = 150°C)</td>
<td>I_D</td>
<td></td>
<td>0.85</td>
<td>-0.6</td>
<td></td>
</tr>
<tr>
<td>Pulsed Drain Current</td>
<td>I_{DM}</td>
<td></td>
<td>3</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>P_D</td>
<td></td>
<td>1.3</td>
<td>1.3</td>
<td>2</td>
</tr>
<tr>
<td>Thermal Resistance, Junction-to-Ambient</td>
<td>R_{thJA}</td>
<td></td>
<td>96.2</td>
<td>96.2</td>
<td>62.5</td>
</tr>
</tbody>
</table>

Notes

a. Pulse width limited by maximum junction temperature.

Device Marking

- Top View: VQ3001J
- Plastic: VQ3001J
- Sidebraze: VQ3001P

“S” = Siliconix Logo
f = Factory Code
l = Lot Traceability
xxyy = Date Code
SPECIFICATIONS (TA = 25°C UNLESS OTHERWISE NOTED)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Condition</th>
<th>Typa</th>
<th>Limits</th>
<th>Unit</th>
<th>N-Channel</th>
<th>P-Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain-Source Breakdown Voltage</td>
<td>V_{BR(DSS)}</td>
<td>V_{GS} = 0 V, I_D = 10 μA, V_{GS} = 0 V, I_D = −10 μA</td>
<td>55</td>
<td>30</td>
<td>−55</td>
<td>−30</td>
<td></td>
</tr>
<tr>
<td>Gate-Source Threshold Voltage</td>
<td>V_{GS(th)}</td>
<td>V_{GS} = 0 V, I_D = 1 mA, V_{GS} = ±20 V, T_J = 125°C</td>
<td>1.5</td>
<td>0.8</td>
<td>2.5</td>
<td>−3.1</td>
<td>−2</td>
</tr>
<tr>
<td>Gate-Body Leakage</td>
<td>I_{GS}</td>
<td>V_{DS} = 0 V, V_{GS} = ±20 V, T_J = 125°C</td>
<td>±100</td>
<td>±100</td>
<td>±500</td>
<td>±500</td>
<td></td>
</tr>
<tr>
<td>Zero-Gate Voltage Drain Current</td>
<td>I_{DSS}</td>
<td>V_{DS} = 24 V, V_{GS} = 0 V, V_{DS} = −24 V, V_{GS} = 0 V, T_J = 125°C</td>
<td>10</td>
<td></td>
<td>−10</td>
<td>500</td>
<td>−500</td>
</tr>
<tr>
<td>On-State Drain Currentb</td>
<td>I_{D(on)}</td>
<td>V_{DS} = 10 V, V_{GS} = 12 V, −10 V, V_{GS} = −12 V</td>
<td>3</td>
<td>2</td>
<td>−2</td>
<td>−1.5</td>
<td></td>
</tr>
<tr>
<td>Drain-Source On-State Resistanceb</td>
<td>r_{DSS(on)}</td>
<td>V_{GS} = 0.2 A, V_{DS} = 0.2 A, I_{G} = 1 A</td>
<td>1.2</td>
<td>1.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.81</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.6</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.65</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.7</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward Transconductanceb</td>
<td>g_f</td>
<td>V_{DS} = 10 V, I_D = 0.5 A, V_{DS} = −10 V, I_D = −0.5 A</td>
<td>390</td>
<td>250</td>
<td>500</td>
<td>390</td>
<td>250</td>
</tr>
<tr>
<td>Dynamic</td>
<td></td>
<td></td>
<td>38</td>
<td>110</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>C_{iss}</td>
<td>V_{DS} = 15 V, V_{GS} = 0 V, f = 1 MHz</td>
<td>60</td>
<td></td>
<td></td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>C_{oss}</td>
<td>V_{DS} = −15 V, V_{GS} = 0 V, f = 1 MHz</td>
<td>33</td>
<td></td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Reverse Transfer Capacitance</td>
<td>C_{rss}</td>
<td>V_{DS} = 15 V, V_{GS} = 0 V, f = 1 MHz</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-On Time</td>
<td>t_{ON}</td>
<td>V_{DD} = 15 V, R_L = 23 Ω, I_D = 0.6 A, V_{GEN} = 10 V, R_G = 25 Ω</td>
<td>9</td>
<td>30</td>
<td>19</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Turn-Off Time</td>
<td>t_{OFF}</td>
<td>V_{DD} = −15 V, R_L = 23 Ω, I_D = −0.8 A, V_{GEN} = −10 V, R_G = 25 Ω</td>
<td>14</td>
<td>30</td>
<td>16</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

a. For DESIGN AID ONLY, not subject to production testing.
b. Pulse test: PW = 300 μs duty cycle = 2%.
TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED) N-CHANNEL

Ohmic Region Characteristics

- $V_{GS} = 10 \text{ V}$
- $V_{GS} = 7 \text{ V}$
- $V_{GS} = 6 \text{ V}$
- $V_{GS} = 5 \text{ V}$
- $V_{GS} = 4 \text{ V}$
- $V_{GS} = 3 \text{ V}$
- $V_{GS} = 2 \text{ V}$

V_{DS} vs. I_D for different V_{GS} values.

Output Characteristics for Low Gate Drive

- $V_{GS} = 10 \text{ V}$
- $V_{GS} = 2.9 \text{ V}$
- $V_{GS} = 2.7 \text{ V}$
- $V_{GS} = 2.5 \text{ V}$
- $V_{GS} = 2.3 \text{ V}$
- $V_{GS} = 2.1 \text{ V}$
- $V_{GS} = 1.7 \text{ V}$

V_{DS} vs. I_D for different V_{GS} values.

Transfer Characteristics

- $V_{DS} = 15 \text{ V}$
- $T_J = 125^\circ C$
- $T_J = 25^\circ C$
- $T_J = -55^\circ C$

V_{GS} vs. I_D for different V_{DS} values.

On-Resistance vs. Gate-Source Voltage

- $I_D = 0.2 \text{ A}$
- $I_D = 0.5 \text{ A}$
- $I_D = 1.0 \text{ A}$

$r_{DS(on)}$ vs. V_{GS} for different I_D values.

On-Resistance vs. Drain Current

- $V_{GS} = 4.5 \text{ V}$
- $V_{GS} = 6 \text{ V}$
- $V_{GS} = 10 \text{ V}$

$r_{DS(on)}$ vs. I_D for different V_{GS} values.

Normalized On-Resistance vs. Junction Temperature

- $V_{GS} = 10 \text{ V}$
- $I_D = 0.5 \text{ A}$
- $I_D = 0.1 \text{ A}$

$r_{DS(on)}$ (Normalized) vs. T_J for different V_{GS} and I_D values.
Typical Characteristics (T_A = 25°C unless otherwise noted)

Threshold Region

- V_{DS} = 10 V
- T_J = 150°C
- 25°C
- 0°C
- -55°C

Gate Charge

- I_D = 1 A
- V_{DS} = 15 V
- 24 V

Capacitance

- C_{iss}, C_{oss}, C_{rss}
- V_{GS} = 0 V
- f = 1 MHz

Load Condition Effects on Switching

- V_{DD} = 25 V
- R_L = 24 Ω
- V_{GS} = 0 to 10 V
- I_D = 1 A

Transconductance

- T_J = -55°C
- 25°C
- 150°C
- V_{DD} = 7.5 V
- 300 µs, 1% Duty Cycle Pulse Test

ID – Drain Current (mA)

C – Capacitance (pF)

t_{r}, t_{f}, t_{d(on)}, t_{d(off)}

R_{G} – Gate Resistance (Ω)

G_{FS} – Forward Transconductance (µS)

I_D – Drain Current (mA)

V_{DD} = 25 V
R_L = 24 Ω
V_{GS} = 0 to 10 V
I_D = 1 A

V_{DD} = 10 V
T_J = 150°C

V_{GS} = 0 to 10 V
ID = 1 A
R_{G} = 24 Ω
V_{GS} = 0 to 10 V
V_{DS} = 7.5 V

V_{GS} = 0 V
f = 1 MHz

www.vishay.com

11-4
TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED) P-CHANNEL

Output Characteristics

Transfer Characteristics

Capacitance

Gate Charge

On-Resistance vs. Junction Temperature

Source-Drain Diode Forward Voltage
TYPICAL CHARACTERISTICS (T_A = 25°C UNLESS OTHERWISE NOTED) P-CHANNEL

On-Resistance vs. Gate-to-Source Voltage

Threshold Region

V_DS = ±10 V

T_J = ±100°C

V_GS = ±55°C
Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.