

Siliconix

N-Channel 30-V (D-S), 150°C MOSFET, Logic Level

Product Summary

Absolute Maximum Ratings ($T_C = 25^{\circ}C$ Unless Otherwise Noted)

Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		V _{DS}	30	v	
Gate-Source Voltage		V _{GS}	± 20	Ť	
Continuous Drain Current	$T_C = 25^{\circ}C$	т	60		
	$T_C = 100^{\circ}C$	ID	51	A	
Pulsed Drain Current		I _{DM}	240	A	
Avalanche Current		I _{AR}	60	7	
Avalanche Energy	L = 0.1 mH	E _{AS}	180	mJ	
Repetitive Avalanche Energy ^a	L = 0.05 mH	E _{AR}	90		
Power Dissipation	$T_C = 25^{\circ}C$	р	105	w	
	$T_C = 100^{\circ}C$	P _D	42	vv	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C	
Lead Temperature $(^{1}/_{16})$ " from case for 10 sec.)		TL	300		

Thermal Resistance Ratings

Parameter	Symbol	Typical	Maximum	Unit
Junction-to-Ambient	R _{thJA}		80	
Junction-to-Case	R _{thJC}		1.2	°C/W
Case-to-Sink	R _{thCS}	1.0		

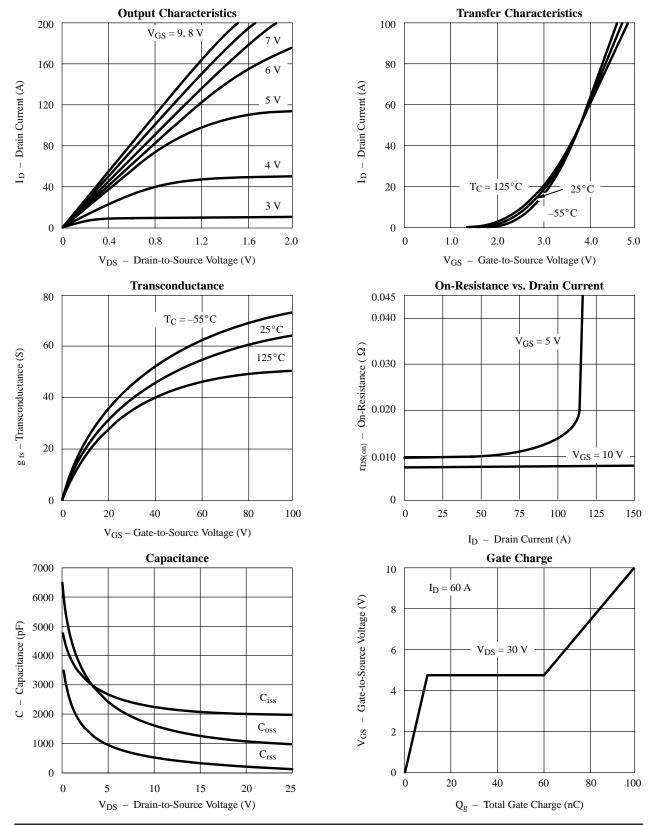
Notes:

Updates to this data sheet may be obtained via facsimile by calling Siliconix FaxBack, 1-408-970-5600. Please request FaxBack document #70280. A SPICE Model data sheet is available for this product (FaxBack document #70525).

a. Duty cycle $\leq 1\%$

Siliconix

Specifications ($T_J = 25^{\circ}C$ Unless Otherwise Noted)

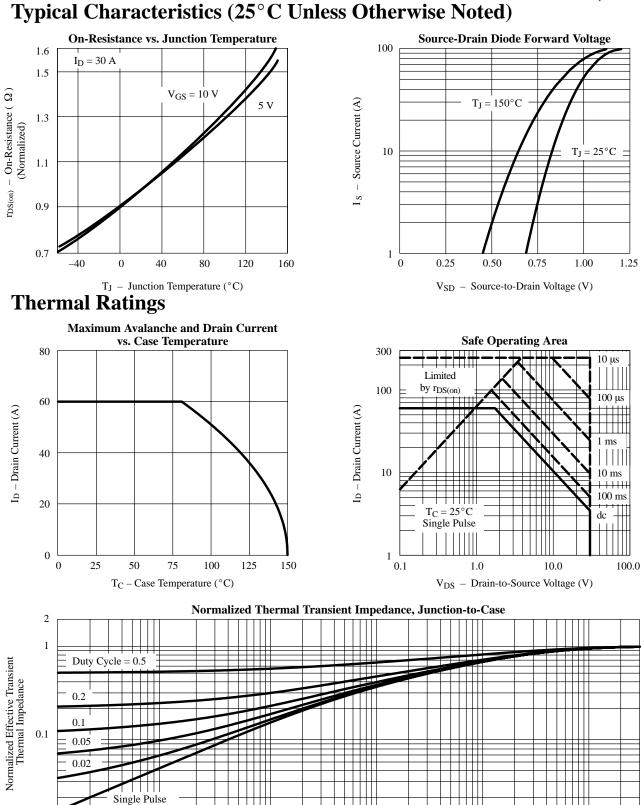

Parameter	Symbol	Test Condition	Min	Typa	Max	Unit	
Static	I		•	•	•		
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μA	30				
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 1 \text{ mA}$	0.8		3.0	v	
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0$ V, $V_{GS} = \pm 20$ V			±500	nA	
Zero Gate Voltage Drain Current	т	$V_{DS} = 24$ V, $V_{GS} = 0$ V			25		
	I _{DSS}	V_{DS} = 24 V, V_{GS} = 0 V, T_J = 125 $^\circ C$	250			μΑ	
On-State Drain Current ^b	I _{D(on)}	$V_{DS} = 10 \text{ V}, V_{GS} = 10 \text{ V}$	60			Α	
Drain-Source On-State Resistance ^b		$V_{GS} = 10 \text{ V}, I_D = 30 \text{ A}$		0.007	0.010	Ω	
	r _{DS(on)}	$V_{GS} = 5 \text{ V}, I_D = 30 \text{ A}$		0.010	0.015		
		$V_{GS} = 10 \text{ V}, I_D = 30 \text{ A}, T_J = 125^{\circ}\text{C}$		0.009	0.014	1	
Forward Transconductance ^b	g _{fs}	$V_{DS} = 15 \text{ V}, I_D = 30 \text{ A}$		45		S	
Dynamic	•						
Input Capacitance	C _{iss}	V_{GS} = 0 V, V_{DS} = 25 V, f = 1 MHz		2600		pF	
Output Capacitance	C _{oss}			1500			
Reverse Transfer Capacitance	C _{rss}			750			
Total Gate Charge ^c	Qg			100	120	nC	
Gate-Source Charge ^c	Qgs	$V_{DS} = 15 V_{,} V_{GS} = 10 V, I_{D} = 60 A$		10	15		
Gate-Drain Charge ^c	Qgd			45	75		
Turn-On Delay Timec	t _{d(on)}			14	30	ns	
Rise Time ^c	t _r	$V_{DD} = 30 \text{ V}, R_L = 1 \Omega$ $I_D \simeq 30 \text{ A}, V_{GEN} = 10 \text{ V}, R_G = 2.5 \Omega$		25	50		
Turn-Off Delay Time ^c	t _{d(off)}			65	100		
Fall Time ^c	tf			45	80		
Source-Drain Diode Ratings and	Characteristi	$\operatorname{cs}\left(\mathrm{T}_{\mathrm{C}}=25^{\circ}\mathrm{C}\right)$					
Continuous Current	I _S				60		
Pulsed Current	I _{SM}				240	A	
Forward Voltage ^b	V _{SD}	$I_F = 60 \text{ A}, \text{ V}_{GS} = 0 \text{ V}$			1.6	v	
Reverse Recovery Time	t _{rr}			160		ns	
Peak Reverse Recovery Current	I _{RM(REC)}	$I_F=60~A,~dl_F/dt=100~A/\mu s$		13		Α	
Reverse Recovery Charge	Qrr			1.0		μC	

Notes:

a. For design aid only; not subject to production testing. b. Pulse test; pulse width $\leq 300 \ \mu$ s, duty cycle $\leq 2\%$.

Independent of operating temperature. c.

Siliconix


Typical Characteristics (25°C Unless Otherwise Noted)

VISHAY

Vishay-Siliconix, 2201 Laurelwood Road, Santa Clara, CA 95054 • Phone (408)988-8000 • FaxBack (408)970-5600 • www.siliconix.com S-57253—Rev. D, 24-Feb-98 Siliconix was formerly a division of TEMIC Semiconductors

SMP60N03-10L

Siliconix

VISHA

Vishay-Siliconix, 2201 Laurelwood Road, Santa Clara, CA 95054 • Phone (408)988-8000 • FaxBack (408)970-5600 • www.siliconix.com S-57253-Rev. D. 24-Feb-98 Siliconix was formerly a division of TEMIC Semiconductors

Square Wave Pulse Duration (sec)

 10^{-2}

 10^{-1}

3

1

 10^{-3}

0.01

 10^{-5}

10-4

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.