Dual P-Channel 20-V (D-S) MOSFET

PRODUCT SUMMARY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Limit</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltage</td>
<td>V_{DS}</td>
<td>-20</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Source Voltage</td>
<td>V_{GS}</td>
<td>± 12</td>
<td></td>
</tr>
<tr>
<td>Continuous Drain Current ($T_J = 150^\circ C$)a</td>
<td>I_D</td>
<td>± 3.4</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed Drain Current</td>
<td>I_{DM}</td>
<td>± 16</td>
<td></td>
</tr>
<tr>
<td>Continuous Source Current (Diode Conduction)a</td>
<td>I_S</td>
<td>-2.0</td>
<td></td>
</tr>
<tr>
<td>Maximum Power Dissipationa</td>
<td>P_D</td>
<td>2.0</td>
<td>W</td>
</tr>
<tr>
<td>Operating Junction and Storage Temperature Range</td>
<td>T_J, T_{stg}</td>
<td>-55 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^\circ C$ UNLESS OTHERWISE NOTED)

THERMAL RESISTANCE RATINGS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Limit</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Junction-to-Ambienta</td>
<td>R_{thJA}</td>
<td>62.5</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Notes:

a. Surface Mounted on FR4 Board, $t = 10$ sec.

For SPICE model information via the Worldwide Web: http://www.vishay.com/www/product/spice.htm
SPECIFICATIONS (T_J = 25°C UNLESS OTHERWISE NOTED)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Condition</th>
<th>Min</th>
<th>Typ<sup>a</sup></th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate Threshold Voltage</td>
<td>VGS(hi)</td>
<td>V_DS = V_GS, I_D = –250 μA</td>
<td>–0.8</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Gate-Body Leakage</td>
<td>I_GSS</td>
<td>V_DS = 0 V, V_GS = ±12 V</td>
<td>±100</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>I_DS</td>
<td>V_DS = –16 V, V_GS = 0 V</td>
<td>–1</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>I_DS</td>
<td>V_DS = –10 V, V_GS = 0 V, T_J = 85°C</td>
<td>–3</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>On-State Drain Current<sup>b</sup></td>
<td>I_D(on)</td>
<td>V_DS = 5 V, V_GS = –4.5 V</td>
<td>–16</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Drain-Source On-State Resistance<sup>b</sup></td>
<td>r_DS(on)</td>
<td>V_GS = –4.5 V, I_D = –3.2 A</td>
<td>0.06</td>
<td>0.075</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Drain-Source On-State Resistance<sup>b</sup></td>
<td>r_DS(on)</td>
<td>V_GS = –3.0 V, I_D = –2.0 A</td>
<td>0.078</td>
<td>0.105</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Drain-Source On-State Resistance<sup>b</sup></td>
<td>r_DS(on)</td>
<td>V_GS = –2.7 V, I_D = –1 A</td>
<td>0.085</td>
<td>0.115</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Forward Transconductance<sup>b</sup></td>
<td>gFS</td>
<td>V_DS = –9 V, I_D = –3.4 A</td>
<td>8</td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>Diode Forward Voltage<sup>b</sup></td>
<td>V_SD</td>
<td>I_S = –2.0 A, V_GS = 0 V</td>
<td>–0.7</td>
<td>–1.2</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Dynamic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Gate Charge</td>
<td>Q_g</td>
<td>V_DS = –6 V, V_GS = –4.5 V, I_D = –3.2 A</td>
<td>10</td>
<td>20</td>
<td></td>
<td>nC</td>
</tr>
<tr>
<td>Gate-Source Charge</td>
<td>Q_gs</td>
<td></td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-Drain Charge</td>
<td>Q_gd</td>
<td></td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-On Delay Time</td>
<td>t_{on}</td>
<td></td>
<td>16</td>
<td>40</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Rise Time</td>
<td>t_r</td>
<td></td>
<td>46</td>
<td>80</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Turn-Off Delay Time</td>
<td>t_{off}</td>
<td>I_D = –1 A, V_GSN = –4.5 V, R_G = 6 Ω</td>
<td>40</td>
<td>70</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Fall Time</td>
<td>t_f</td>
<td></td>
<td>25</td>
<td>40</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Source-Drain Reverse Recovery Time</td>
<td>t_{rr}</td>
<td>I_F = –2.0 A, di/dt = 100 A/μs</td>
<td>60</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes

- **a.** For design aid only; not subject to production testing.
- **b.** Pulse test; pulse width ≤ 300 μs, duty cycle ≤ 2%.
TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

Output Characteristics

- V_{DS} – Drain-to-Source Voltage (V)
- I_D – Drain Current (A)
- V_{GS} – Gate-to-Source Voltage (V)
- Q_g – Total Gate Charge (nC)

Transfer Characteristics

- V_{GS} – Gate-to-Source Voltage (V)
- I_D – Drain Current (A)
- T_J – Junction Temperature (°C)
- $r_{DS(on)}$ – On-Resistance (Ω)

Capacitance

- C_{rss}
- C_{oss}
- C_{iss}

On-Resistance vs. Drain Current

- I_D – Drain Current (A)
- $r_{DS(on)}$ – On-Resistance (Ω)

Gate Charge

- V_{DS} – Drain-to-Source Voltage (V)
- Q_g – Total Gate Charge (nC)

On-Resistance vs. Junction Temperature

- T_J – Junction Temperature (°C)
- $r_{DS(on)} – On-Resistance (Ω)$ (Normalized)

- V_{GS} – Gate-to-Source Voltage (V)
- I_D – Drain Current (A)
- T_J – Junction Temperature (°C)

- V_{DS} = 6 V
 - I_D = 3.2 A

- V_{GS} = 4.5 V
 - I_D = 3.2 A

- V_{GS} = 5 – 3.5 V
 - I_D = 3.2 A

- V_{GS} = 2.7 V

- V_{GS} = 3 V

- V_{GS} = 4.5 V

- V_{GS} = 5 V

- V_{GS} = 3.5 V

- V_{GS} = 2 V

- V_{GS} = 2.5 V

- V_{GS} = 1.5 V

- V_{GS} = 1 V

- V_{GS} = 0.5 V

- V_{GS} = 0 V

- V_{GS} = 2.5 V

- V_{GS} = 2 V

- V_{GS} = 1.5 V

- V_{GS} = 1 V

- V_{GS} = 0.5 V

- V_{GS} = 0 V
Si9933ADY

Vishay Siliconix

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

Source-Drain Diode Forward Voltage

![Graph showing Source-Drain Voltage vs. Current](image1)

- **V_{SD}** – Source-to-Drain Voltage (V)
- **I_S** – Source Current (A)
- **$T_J = 150$°C**
- **$T_J = 25$°C**

On-Resistance vs. Gate-to-Source Voltage

![Graph showing On-Resistance vs. Gate-to-Source Voltage](image2)

- **V_{GS}** – Gate-to-Source Voltage (V)
- **$r_{DS(on)}$** – On-Resistance (Ω)
- **$I_D = 3.2$ A**

Threshold Voltage

![Graph showing Threshold Voltage](image3)

- **$V_{GS(th)}$** – Source-to-Drain Voltage (V)
- **$I_D = 250$ µA**

Single Pulse Power

![Graph showing Single Pulse Power](image4)

- **P_{DM}** – Power (W)
- **D** – Duty Cycle
- **I_T** – Transient Current

Normalized Thermal Transient Impedance, Junction-to-Ambient

![Graph showing Normalized Thermal Transient Impedance](image5)

- **Normalized Effective Transient Thermal Impedance**
- **Square Wave Pulse Duration (sec)**
- **Notes:**
 1. Duty Cycle, $D = \frac{t_1}{T_S}$
 2. Per Unit Base = $R_{thJA} = 62.5$°C/W
 3. $T_{JM} - T_A = P_{DM}Z_{thJA}$
 4. Surface Mounted
Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.