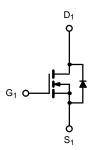
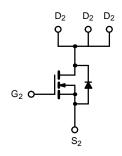


Asymmetrical Dual N-Channel 30-V (D-S) MOSFET

PRODUCT SUMMARY							
	V _{DS} (V)	$r_{DS(on)}(\Omega)$	I _D (A)				
Channel-1		0.022 @ V _{GS} = 10 V	6.3				
	20	0.030 @ V _{GS} = 4.5 V	5.4				
Channel-2	30	0.0155 @ V _{GS} = 10 V	9.5				
		0.0205 @ V _{GS} = 4.5 V	8.2				


FEATURES

• 100% R_g Tested



Ordering Information: Si4826DY

Si4826DY Si4826DY-T1 (with Tape and Reel)

N-Channel 1 MOSFET

N-Channel 2 MOSFET

ABSOLUTE MAXIMUM RATINGS (TA = 25°C UNLESS OTHERWISE NOTED)							
			Ch	annel 1	Channel 2		
Parameter		Symbol	10 secs	Steady State	10 secs	Steady State	Unit
Drain-Source Voltage		V _{DS}	30				
Gate-Source Voltage		V_{GS}	20				
Continuous Drain Current (T, =	T _A = 25°C		6.3	5.3	9.5	7.0	
150°C) ^{NO} TAG	T _A = 70°C	- ' _D	5.4	4.2	7.6	5.6	1
Pulsed Drain Current		I _{DM}		30	40		Α
Continuous Source Current (Diode Conduction)NO TAG		IS	1.3	0.9	2.2	1.15	
Maniana Banas Biasia atau NO TAG	T _A = 25°C		1.4	1.0	2.4	1.25	14/
Maximum Power DissipationNO TAG	T _A = 70°C	- P _D	0.9	0.64	1.5	0.80	W
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150				°C

THERMAL RESISTANCE RATINGS								
			Channel 1		Channel 2			
Parameter		Symbol	Тур	Max	Тур	Max	Unit	
Maximum Junction-to-AmbientNO TAG	t ≤ 10 sec	_	72	90	43	53		
	Steady-State	R _{thJA}	100	125	82	100	°C/W	
Maximum Junction-to-Foot (Drain)	Steady-State	R _{thJC}	51	63	25	30		

Notes

a. Surface Mounted on 1" x 1" FR4 Board.

Si4826DY

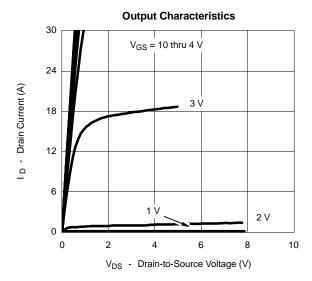
Vishay Siliconix

Parameter Symbol		Test Condition			Тур	Max	Unit			
Static										
Gate Threshold Voltage	V _{GS(th)}	V _{DS} = V _{GS} , I _D = 250 μA	Ch-1	0.8			V			
	· G3(III)	103 103, 10 200 p. 1	Ch-2	1.0						
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = 20 \text{ V}$	Ch-1			100	nA			
	000	103 0 1, 163 20 1	Ch-2			100				
Zero Gate Voltage Drain Current		$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$	Ch-1			1				
	I _{DSS}		Ch-2			1	μΑ			
		$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 85^{\circ}\text{C}$	Ch-1			15				
			Ch-2			15				
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = 5 \text{ V}, V_{GS} = 10 \text{ V}$	Ch-1	20			Α			
	·D(OII)		Ch-2	30						
Drain-Source On-State Resistance ^a		$V_{GS} = 10 \text{ V}, I_D = 6.3 \text{ A}$	Ch-1		0.018	0.022	Ω			
	Fac	$V_{GS} = 10 \text{ V}, I_D = 9.5 \text{ A}$	Ch-2		0.0125	0.0155				
	r _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 5.4 \text{ A}$	Ch-1		0.024	0.030				
		$V_{GS} = 4.5 \text{ V}, I_D = 8.2 \text{ A}$	Ch-2		0.0165	0.0205				
Forward Transconductance ^a	9fs	V _{DS} = 15 V, I _D = 6.3 A	Ch-1		17					
		V _{DS} = 15 V, I _D = 9.5 A	Ch-2		28		S			
Diode Forward Voltage ^a	V _{SD}	I _S = 1.3 A, V _{GS} = 0 V Ch-1			0.7	1.1	V			
		$I_S = 2.2 \text{ A}, V_{GS} = 0 \text{ V}$	Ch-2		0.75	1.1	V			
Dynamic ^b				•		•				
Total Cata Charma			Ch-1		8.0	12				
Total Gate Charge	Qg	Channel-1	Ch-2		15	23				
Cata Cauras Charma	Q _{gs}	$V_{DS} = 15 \text{ V}, \ V_{GS} = 5 \text{ V}, \ I_{D} = 6.3 \text{ A}$			1.75		1			
Gate-Source Charge		Channel-2	Ch-2		5.3		nC			
Gate-Drain Charge	Q _{gd}	$V_{DS} = 15 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = -9.5 \text{ A}$	Ch-1		3.2					
			Ch-2		4.6					
Gate Resistance	Б		Ch-1	1.5		5.1	Ω			
	R _g		Ch-2	0.5		2.6	22			
			Ch-1		10	20				
Turn-On Delay Time	^t d(on)		Ch-2	15	15	30				
Rise Time	1 .	Channel-1 $V_{DD} = 15 \text{ V}, R_L = 15 \Omega$	Ch-1		5	10	-			
	t _r	$I_D \cong 1 \text{ A}, V_{GEN} = 10 \text{ V}, R_G = 6 \Omega$	Ch-2		5	10				
Turn-Off Delay Time	t _{d(off)}	Channel-2	Ch-1		26	50	1			
		V_{DD} = 15 V, R_L = 15 Ω I_D \cong 1 A, V_{GEN} = 10 V, R_G = 6 Ω	Ch-2		44	80	ns			
Fall Time		$ID = IA$, $VGEN = IUV$, $KG = 0\Omega$	Ch-1		8	16				
	t _f		Ch-2		12	24	1			
Source-Drain Reverse Recovery Time	1	I _F = 1.3 A, di/dt = 100 A/μs	Ch-1		30	60				
	t _{rr}	I _F = 2.2 A, di/dt = 100 μA/μs	Ch-2		32	70	1			

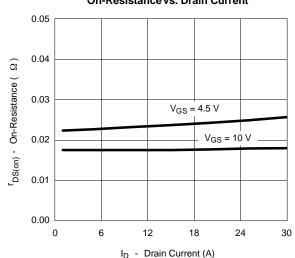
Notes a. Pulse test; pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. b. Guaranteed by design, not subject to production testing.

3.0

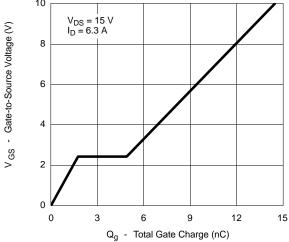
3.5


4.0

2.5



TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)


CHANNEL 1

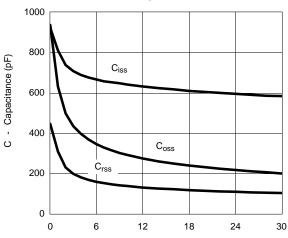
On-Resistance vs. Drain Current

10

Gate Charge

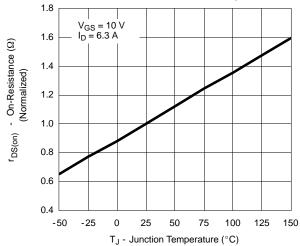
Transfer Characteristics 30 24 I_D - Drain Current (A) 18 12 T_C = 125°C 6 25°C 55°C 0

2.0 V_{GS} - Gate-to-Source Voltage (V)


0.5

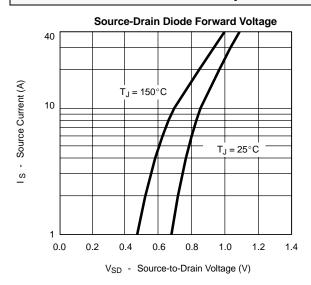
1.0

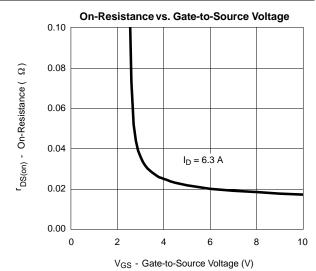
1.5

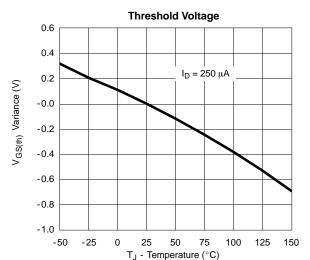

0.0

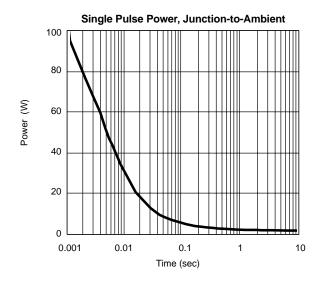
Capacitance

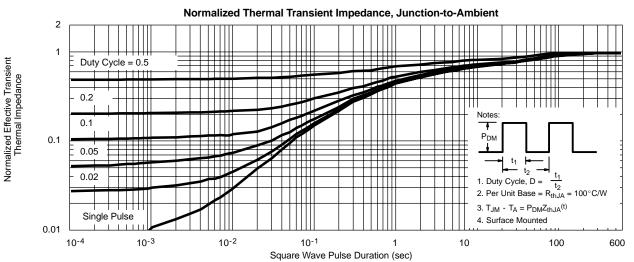
V_{DS} - Drain-to-Source Voltage (V)

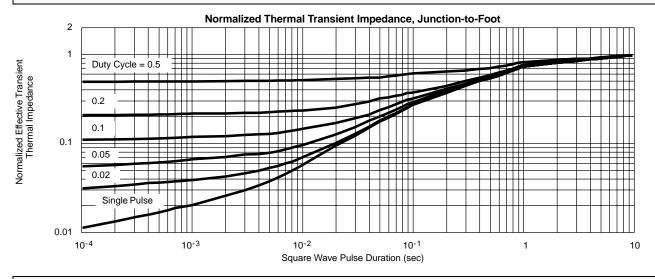

On-Resistance vs. Junction Temperature

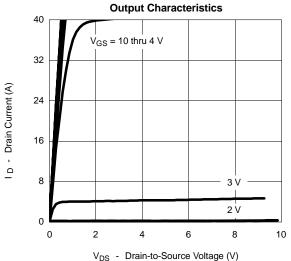


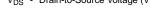


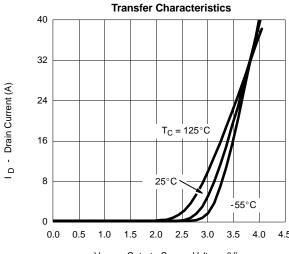

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)


CHANNEL 1

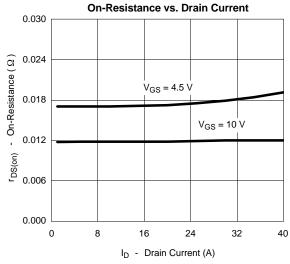


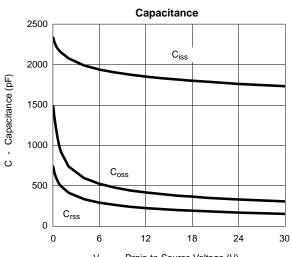

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)


CHANNEL 1

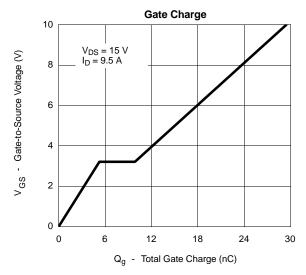


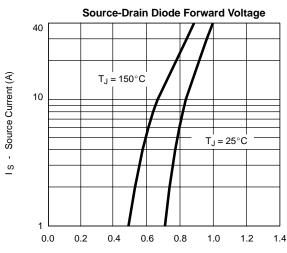
TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

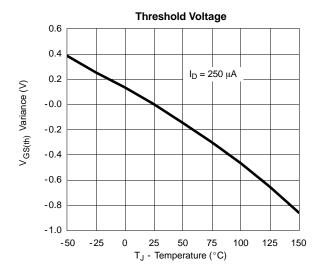

CHANNEL 2

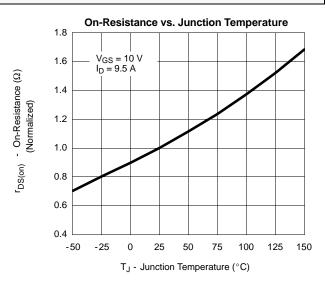


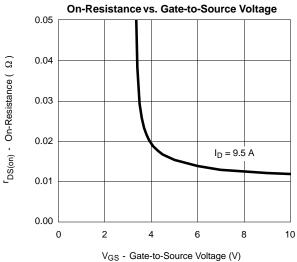
V_{GS} - Gate-to-Source Voltage (V)

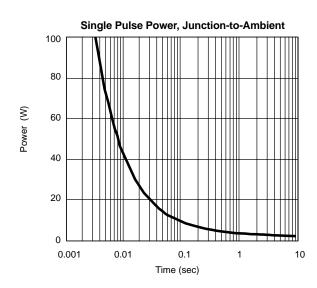



V_{DS} - Drain-to-Source Voltage (V)

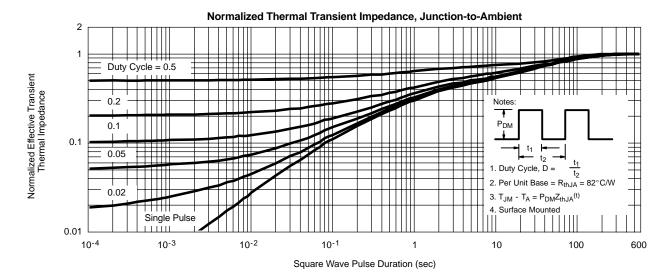

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

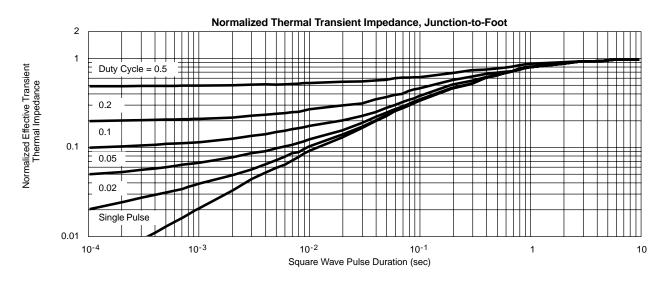

CHANNEL 2





V_{SD} - Source-to-Drain Voltage (V)





TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

CHANNEL 2

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

Document Number: 91000 www.vishay.com Revision: 08-Apr-05

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.