2N7002K

RoHS

HALOGEN

FREE

Vishay Siliconix

www.vishay.com

N-Channel 60 V (D-S) MOSFET

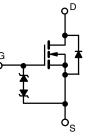
Marking code: 7K

PRODUCT SUMMARY				
V _{DS} (V)	60			
$R_{DS(on)}$ max. (Ω) at V_{GS} = 10 V	2			
Q _g typ. (nC)	0.4			
I _D (A)	0.3			
Configuration	Single			

FEATURES

- Low on-resistance: 2 Ω
- Low threshold: 2 V (typ.)
- Low input capacitance: 25 pF
- Fast switching speed: 25 ns
- · Low input and output leakage
- TrenchFET[®] power MOSFET
- 2000 V ESD protection
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

Note


* This datasheet provides information about parts that are RoHS-compliant and / or parts that are non RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details

BENEFITS

- Low offset voltage
- · Low voltage operation
- · Easily driven without buffer
- High speed circuits
- · Low error voltage

APPLICATIONS

- Direct logic-level interface: TTL/CMOS
- Drivers: relays, solenoids, lamps, hammers, display, memories, transistors, etc.
- Battery operated systems
- Solid state relays

N-Channel MOSFET

ORDERING INFORMATION			
Package	SOT-23		
Lead (Pb)-free	2N7002K-T1-E3		
Lead (Pb)-free and halogen-free	2N7002K-T1-GE3		

ABSOLUTE MAXIMUM RATINGS ($T_A = 25 \text{ °C}$, unless otherwise noted)					
PARAMETER			UNIT		
Drain-source voltage		60	V		
١		± 20	v		
T _A = 25 °C	1	0.3	А		
T _A = 100 °C	I _D	0.19			
	I _{DM}	0.8			
T _A = 25 °C	D	0.35	W		
T _A = 100 °C	PD	0.14	vv		
	R _{thJA}	350	°C/W		
	T _{J,} T _{stg}	-55 to +150	°C		
	$T_{A} = 25 °C$ $T_{A} = 100 °C$ $T_{A} = 25 °C$	$\begin{tabular}{ c c c c c } \hline SYMBOL & V_{DS} & \\ \hline V_{DS} & V_{GS} & \\ \hline V_{GS} & & \\ \hline T_A = 25 \ ^{\circ}C & & \\ \hline T_A = 100 \ ^{\circ}C & & \\ \hline & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline \\$	$\begin{tabular}{ c c c c c } \hline $SYMBOL$ $LIMIT$ \\ \hline V_{DS} & 60 \\ \hline V_{GS} & ± 20 \\ \hline V_{GS} & ± 20 \\ \hline V_{GS} & ± 20 \\ \hline 0.19 \\ \hline $T_A = 100\ ^{\circ}C$ & I_D & 0.3 \\ \hline $T_A = 100\ ^{\circ}C$ & P_D & 0.35 \\ \hline $T_A = 100\ ^{\circ}C$ & P_D & 0.14 \\ \hline R_{thJA} & 350 \\ \hline \end{tabular}$		

Notes

a. Pulse width limited by maximum junction temperature

b. Surface mounted on FR4 board

S17-1299-Rev. F, 21-Aug-17

1

For technical questions, contact: <u>pmostechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

RES

2N7002K

Vishay Siliconix

SPECIFICATIONS ($T_A = 25^{\circ}$		-	T			
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP. ^a	MAX.	UNIT
Static			- -			
Drain-source breakdown voltage	V _{DS}	$V_{GS} = 0 V$, $I_D = 10 \mu A$	60	-	-	V
Gate-threshold voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	1	-	2.5	v
		$V_{DS} = 0 V, V_{GS} = \pm 20 V$	$V_{DS} = 0 V, V_{GS} = \pm 20 V$ ±		± 10	μA
		$V_{DS} = 0 V, V_{GS} = \pm 15 V$ -		-	1	
Gate-body leakage	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 10 V$	-	-	± 150	nA
		V_{DS} = 0 V, V_{GS} = ± 10 V, T _J = 85 °C	-	-	± 1000	
		$V_{DS} = 0 V, V_{GS} = \pm 5 V$	-	-	± 100	
Zero gate voltage drain current		$V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}$	1		1	
	I _{DSS}	$V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 125 ^{\circ}\text{C}$	-	-	500	μA
On-state drain current ^b	I _{D(on)}	$V_{GS} = 10 \text{ V}, \text{ V}_{DS} = 7.5 \text{ V}$	800	-		
		$V_{GS} = 4.5 \text{ V}, V_{DS} = 10 \text{ V}$	500	-	-	mA
	R _{DS(on)}	V _{GS} = 10 V, I _D = 500 mA		-	2	
Drain-source on-resistance ^b		$V_{GS} = 4.5 \text{ V}, I_D = 200 \text{ mA}$	-	-	4	Ω
Forward transconductance b	g _{fs}	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 200 \text{ mA}$	100	-	-	mS
Diode forward voltage	V _{SD}	$I_{\rm S}$ = 200 mA, $V_{\rm GS}$ = 0 V	-	-	1.3	V
Dynamic ^{a, b}						
Total gate charge	Qg	$\begin{array}{l} V_{DS} = 10 \text{ V}, V_{GS} = 4.5 \text{ V} \\ \text$	-	0.4	0.6	nC
Input capacitance	C _{iss}		-	30	-	
Output capacitance	C _{oss}	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}$ f = 1 MHz	-	6	-	pF
Reverse transfer capacitance	C _{rss}		-	2.5	-	
Switching ^{a, c}	· ·					
Turn-on time	t _{d(on)}	$V_{DD} = 30 \text{ V}, \text{ R}_{\text{I}} = 150 \Omega$	-	-	25	ns
Turn-off time	t _{d(off)}	$I_D \cong 200 \text{ mA}, V_{GEN} = 10 \text{ V}, R_g = 10 \Omega$	-	-	35	

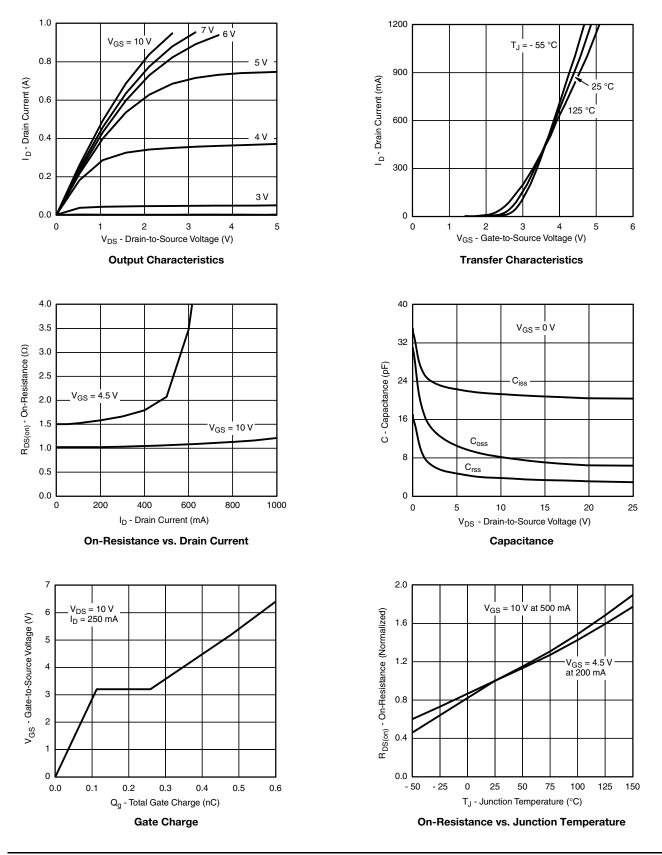
Notes

a. For DESIGN AID ONLY, not subject to production testing

b. Pulse test: pulse width \leq 300 µs duty cycle \leq 2 %

c. Switching time is essentially independent of operating temperature

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


2

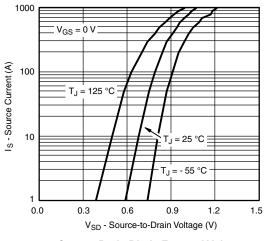
2N7002K

Vishay Siliconix

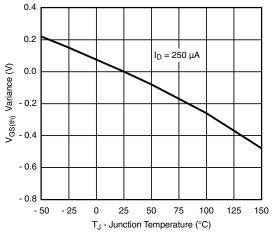
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

S17-1299-Rev. F, 21-Aug-17

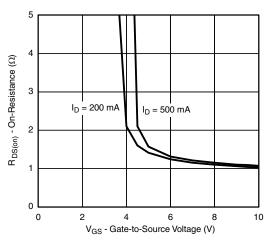
3

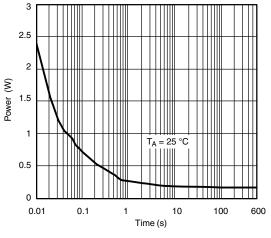

Document Number: 71333

For technical questions, contact: <u>pmostechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

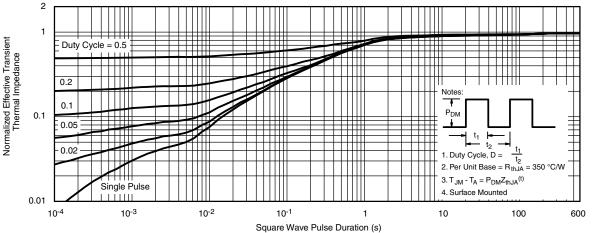


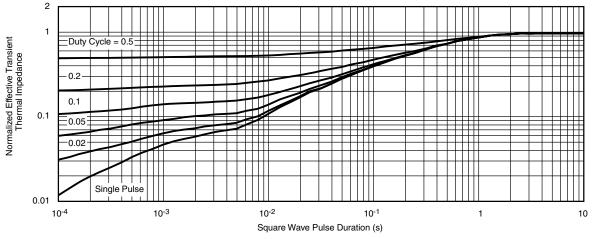
Vishay Siliconix


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Source-Drain Diode Forward Voltage

Threshold Voltage Variance Over Temperature


On-Resistance vs. Gate-Source Voltage


Single Pulse Power, Junction-to-Ambient

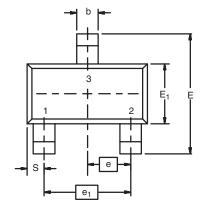
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

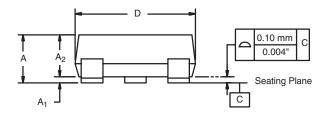
Normalized Thermal Transient Impedance, Junction-to-Ambient

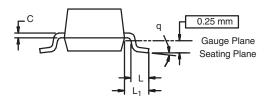
Normalized Thermal Transient Impedance, Junction-to-Foot

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg?71333.

2N7002K

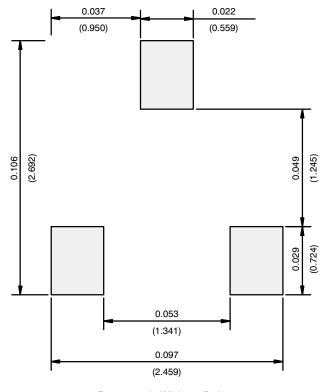

Vishay Siliconix




Package Information

Vishay Siliconix

SOT-23 (TO-236): 3-LEAD


Dim	MILLIMETERS		INCHES		
	Min	Max	Min	Мах	
Α	0.89	1.12	0.035	0.044	
A ₁	0.01	0.10	0.0004	0.004	
A ₂	0.88	1.02	0.0346	0.040	
b	0.35	0.50	0.014	0.020	
С	0.085	0.18	0.003	0.007	
D	2.80	3.04	0.110	0.120	
E	2.10	2.64	0.083	0.104	
E ₁	1.20	1.40	0.047	0.055	
е	0.95 BSC		0.0374 Ref		
e ₁	1.90 BSC		0.0748 Ref		
L	0.40	0.60	0.016	0.024	
L ₁	0.64 Ref		0.025 Ref		
S	0.50 Ref		0.020 Ref		
q	3°	8°	3°	8°	

Application Note 826

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR SOT-23

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2025 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2025

1