CMOS Analog Switches

DESCRIPTION
The DG300B, DG303B family of monolithic CMOS switches feature three switch configuration options (SPST, SPDT, and DPST) for precision applications in communications, instrumentation and process control, where low leakage switching combined with low power consumption are required.

Designed on the Vishay Siliconix PLUS-40 CMOS process, these switches are latch-up proof, and are designed to block up to 30 V peak-to-peak when off. An epitaxial layer prevents latchup.

In the on condition the switches conduct equally well in both directions (with no offset voltage) and minimize error conditions with their low on-resistance.

Featuring low power consumption (3.5 mW typ.) these switches are ideal for battery powered applications, without sacrificing switching speed. Designed for break-before-make switching action, these devices are CMOS and quasi TTL compatible. Single supply operation is allowed by connecting the V- rail to 0 V.

FEATURES
• Analog signal range: ± 15 V
• Fast switching - tON: 150 ns
• Low on-resistance - RDS(on): 30 Ω
• Single supply operation
• Latch-up proof
• CMOS compatible

BENEFITS
• Full rail-to-rail analog signal range
• Low signal error
• Low power dissipation

APPLICATIONS
• Low level switching circuits
• Programmable gain amplifiers
• Portable and battery powered systems

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE
<table>
<thead>
<tr>
<th>Logic</th>
<th>Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>OFF</td>
</tr>
<tr>
<td>1</td>
<td>ON</td>
</tr>
</tbody>
</table>

Logic “0” ≤ 0.8 V
Logic “1” ≥ 4 V

* Pb containing terminations are not RoHS compliant, exemptions may apply.
DG300B, DG301B, DG302B, DG303B

Vishay Siliconix

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

DG302B

<table>
<thead>
<tr>
<th>Switch</th>
<th>Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>0</td>
</tr>
<tr>
<td>ON</td>
<td>1</td>
</tr>
</tbody>
</table>

Logic “0” ≤ 0.8 V
Logic “1” ≥ 4 V

DG303B

<table>
<thead>
<tr>
<th>Switch</th>
<th>Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>0</td>
</tr>
<tr>
<td>ON</td>
<td>1</td>
</tr>
</tbody>
</table>

Logic “0” ≤ 0.8 V
Logic “1” ≥ 4 V

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Temp. Range</th>
<th>Standard Package</th>
<th>Standard Part Number</th>
<th>Lead (Pb)-free Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40 °C to 85 °C</td>
<td>14-Pin Plastic DIP</td>
<td>DG300BDJ</td>
<td>DG300BDJ-E3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DG301BDJ</td>
<td>DG301BDJ-E3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DG302BDJ</td>
<td>DG302BDJ-E3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DG303BDJ</td>
<td>DG303BDJ-E3</td>
</tr>
<tr>
<td></td>
<td>14-SOIC</td>
<td>DG303BDY</td>
<td>DG303BDY-T1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DG303BDY-T1-E3</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings (\(T_A = 25 \, ^\circ C\), unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Limit</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltages Referenced (V^+) to (V^-)</td>
<td>44</td>
<td>V</td>
</tr>
<tr>
<td>(GND)</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Digital Inputs(^a), (V_S), (V_D)</td>
<td>((V^-) - 2 \text{ to } (V^+) + 2) or 30 mA, whichever occurs first</td>
<td></td>
</tr>
<tr>
<td>Current (Any Terminal)</td>
<td>30</td>
<td>mA</td>
</tr>
<tr>
<td>Continuous Current, (S) or (D) (Pulsed at 1 ms, 10% duty cycle max.)</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65 to 150</td>
<td>(^\circ)C</td>
</tr>
<tr>
<td>Power Dissipation (Package)(^b)</td>
<td>470</td>
<td>mW</td>
</tr>
<tr>
<td>14-Pin PlasticDIP(^c)</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>SOIC-14(^d)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

a. Signals on \(S_X\), \(D_X\), or \(I_N\) exceeding \(V^+\) or \(V^-\) will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC board.
c. Derate 6.5 mW/°C above 25 °C
d. Derate 7.6 mW/°C above 75 °C.

Schematic Diagram (Typical Channel)

![Schematic Diagram](image)

Figure 1.
SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions Unless Otherwise Specified</th>
<th>Temp.</th>
<th>Limits -40 °C to 85 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog Signal Range</td>
<td>(V_{\text{ANALOG}})</td>
<td>(V_+ = 15 \text{ V}, V_- = -15 \text{ V}) (V_{\text{IN}} = 0.8 \text{ V}) or (V_{\text{IN}} = 4 \text{ V})</td>
<td>Full</td>
<td>Min.d Typ.c Max.d Unit</td>
</tr>
<tr>
<td>Drain-Source On-Resistance</td>
<td>(R_{\text{DS(on)}})</td>
<td>(V_D = \pm 10 \text{ V}, I_S = -10 \text{ mA})</td>
<td>Room</td>
<td>- 15 15 V</td>
</tr>
<tr>
<td>Source Off Leakage Current</td>
<td>(I_{\text{S(Off)}})</td>
<td>(V_S = \pm 14 \text{ V}, V_D = \pm 14 \text{ V})</td>
<td>Room</td>
<td>- 5 - 100 ± 0.1 5 100 nA</td>
</tr>
<tr>
<td>Drain Off Leakage Current</td>
<td>(I_{\text{D(Off)}})</td>
<td>(V_S = V_D = \pm 14 \text{ V})</td>
<td>Room</td>
<td>- 5 - 100 ± 0.1 5 100 nA</td>
</tr>
<tr>
<td>Drain On Leakage Current</td>
<td>(I_{\text{D(On)}})</td>
<td>(V_S = V_D = \pm 14 \text{ V})</td>
<td>Room</td>
<td>- 5 - 100 ± 0.1 5 100 nA</td>
</tr>
<tr>
<td>Digital Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Current with Input Voltage High</td>
<td>(I_{\text{INH}})</td>
<td>(V_{\text{IN}} = 5 \text{ V})</td>
<td>Room</td>
<td>- 1 - 0.001 (\mu \text{A})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{IN}} = 15 \text{ V})</td>
<td>Room</td>
<td>0.001 1 (\mu \text{A})</td>
</tr>
<tr>
<td>Input Current with Input Voltage Low</td>
<td>(I_{\text{INL}})</td>
<td>(V_{\text{IN}} = 0 \text{ V})</td>
<td>Room</td>
<td>- 1 - 0.001 (\mu \text{A})</td>
</tr>
<tr>
<td>Dynamic Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-On Time</td>
<td>(t_{\text{ON}})</td>
<td>see figure 2</td>
<td>Room</td>
<td>150 ns</td>
</tr>
<tr>
<td>Turn-Off Time</td>
<td>(t_{\text{OFF}})</td>
<td></td>
<td>Room</td>
<td>130 ns</td>
</tr>
<tr>
<td>Break-Before-Make Time</td>
<td>(t_{\text{OPEN}})</td>
<td>DG301B, DG303B Only</td>
<td>Room</td>
<td>50 ns</td>
</tr>
<tr>
<td>Charge Injection</td>
<td>(Q)</td>
<td>(C_L = 1 \text{ nF}, R_{\text{gen}} = 0 \text{ \Omega}, V_{\text{gen}} = 0 \text{ V})</td>
<td>Room</td>
<td>8 pC</td>
</tr>
<tr>
<td>Source Off Capacitance</td>
<td>(C_{\text{S(Off)}})</td>
<td>(V_S, V_D = 0 \text{ V}, f = 1 \text{ MHz})</td>
<td>Room</td>
<td>14 pF</td>
</tr>
<tr>
<td>Drain Off Capacitance</td>
<td>(C_{\text{D(Off)}})</td>
<td>(V_S, V_D = 0 \text{ V}, f = 1 \text{ MHz})</td>
<td>Room</td>
<td>14 pF</td>
</tr>
<tr>
<td>Channel-On Capacitance</td>
<td>(C_{\text{D(on)}})</td>
<td>(V_S, V_D = 0 \text{ V}, f = 1 \text{ MHz})</td>
<td>Room</td>
<td>40 pF</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>(C_{\text{in}})</td>
<td>(f = 1 \text{ MHz}) (V_{\text{IN}} = 0 \text{ V}) (V_{\text{IN}} = 15 \text{ V})</td>
<td>Room</td>
<td>6 pF 7 pF</td>
</tr>
<tr>
<td>Off Isolation</td>
<td>(Q_{\text{IRR}})</td>
<td>(V_{\text{IN}} = 0 \text{ V}, R_L = 1 \text{ k\Omega})</td>
<td>Room</td>
<td>62 dB</td>
</tr>
<tr>
<td>Crosstalk (Channel-to-Channel)</td>
<td>(X_{\text{TALK}})</td>
<td>(V_S = 1 \text{ V}_{\text{imp}}, f = 500 \text{ kHz})</td>
<td>Room</td>
<td>74 dB</td>
</tr>
<tr>
<td>Power Supplies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive Supply Current</td>
<td>(I^+)</td>
<td>(V_{\text{IN}} = 4 \text{ V}) (one input) (V_{\text{IN}} = 0.8 \text{ V}) (all inputs)</td>
<td>Room</td>
<td>0.23 1 (\text{mA})</td>
</tr>
<tr>
<td>Negative Supply Current</td>
<td>(I^-)</td>
<td></td>
<td>Room</td>
<td>- 100 - 0.001 (\mu \text{A})</td>
</tr>
<tr>
<td>Positive Supply Current</td>
<td>(I^+)</td>
<td>(V_{\text{IN}} = 4 \text{ V}) (one input) (V_{\text{IN}} = 0.8 \text{ V}) (all inputs)</td>
<td>Room</td>
<td>0.001 100 (\mu \text{A})</td>
</tr>
<tr>
<td>Negative Supply Current</td>
<td>(I^-)</td>
<td></td>
<td>Room</td>
<td>- 100 - 0.001 (\mu \text{A})</td>
</tr>
</tbody>
</table>

Notes:

a. Refer to PROCESS OPTION FLOWCHART.
b. Room = 25 °C, Full = as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f. \(V_{\text{IN}} \) = input voltage to perform proper function.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
TYPICAL CHARACTERISTICS *(TA = 25 °C, unless otherwise noted)*

![Graph 1: RDS(on) vs. VD and Power Supply](image)

- **RDS(on) vs. VD and Power Supply**
 - TA = 25 °C
 - ± 5 V
 - ± 8 V
 - ± 10 V
 - ± 12 V
 - ± 15 V
 - ± 20 V

![Graph 2: RDS(on) vs. VD and Temperature](image)

- **RDS(on) vs. VD and Temperature**
 - V+ = 15 V
 - V- = -15 V
 - TA = 25 °C
 - TA = 125 °C
 - TA = -55 °C

![Graph 3: Charge Injection vs. Analog Voltage](image)

- **Charge Injection vs. Analog Voltage**
 - V+ = 15 V
 - V- = -15 V
 - CL = 1 nF

![Graph 4: Switching Time and Break-Before-Make Time](image)

- **Switching Time and Break-Before-Make Time**
 - DG301B, DG303B only
 - V+ = 15 V
 - V- = -15 V
 - VINH = 4 V
 - VINL = 0 V

![Graph 5: Input Switching Threshold](image)

- **Input Switching Threshold**
 - V+ = 15 V
 - TA = 25 °C

Document Number: 71402

S11-0303-Rev. C, 28-Feb-11

www.vishay.com
Vishay Siliconix

DG300B, DG301B, DG302B, DG303B

TYPICAL CHARACTERISTICS \((T_A = 25 \, ^\circ C, \text{ unless otherwise noted}) \)

Supply Current vs. Temperature

Switching Time vs. Power Supply Voltage

Off Isolation and Crosstalk vs. Frequency

Leakage vs. Temperature

Switching Time vs. Temperature
TEST CIRCUITS

Figure 2. Switching Time

- **$V_S = 3\, \text{V}$**
- $R_L = 300\, \Omega$
- $C_L = 33\, \text{pF}$
- $V_O = V_S \frac{R_L}{R_L + r_{DS(on)}}$
- $V_{-} = -15\, \text{V}$
- $V_{+} = +15\, \text{V}$
- S and D are logic inputs.

Calculation:

\[
V_O = V_S \frac{R_L}{R_L + r_{DS(on)}},
\]

Logic Input:

- $0\, \text{V}$ (50%)
- $1\, \text{V}$ (50%)
- $0\, \text{V}$ (10%)

Switch Output:

- V_S
- V_O
- t_{ON}
- t_{OFF}

Logic “1” = Switch On

Figure 3. Break-Before-Make SPDT (DG301B, DG303B)

- **$V_{S1} = 3\, \text{V}$**
- **$V_{S2} = 3\, \text{V}$**
- $R_{L1} = 300\, \Omega$
- $C_{L1} = 33\, \text{pF}$
- V_{O1}
- V_{O2}
- $S1$ and $D1$ are logic inputs.

Calculation:

\[
V_O = V_S \frac{R_L}{R_L + r_{DS(on)}},
\]

Logic Input:

- $0\, \text{V}$ (50%)
- V_{INH} (50%)
- $0\, \text{V}$ (10%)

Switch Output:

- V_{S1}
- V_{S2}
- V_{O1}
- V_{O2}
- t_{BBM}

Logic “1” = Switch On

Figure 4. Charge Injection

- **$V_S = 3\, \text{V}$**
- $R_g = \text{variable}$
- $C_L = 1\, \text{nF}$
- $V_{-} = -15\, \text{V}$
- $V_{+} = +15\, \text{V}$
- V_O
- ΔV_O
- I_{ON}
- I_{OFF}

Calculation:

\[
\Delta V_O = \frac{C_L}{R_g},
\]

Logic Input:

- V_O
- I_{ON}
- I_{OFF}

Logic “1” = Switch On

Vishay Siliconix

DG300B, DG301B, DG302B, DG303B

www.vishay.com
DG300B, DG301B, DG302B, DG303B

Vishay Siliconix

APPLICATIONS HINTS

<table>
<thead>
<tr>
<th>V+ Positive Supply Voltage (V)</th>
<th>V- Negative Supply Voltage (V)</th>
<th>GND Voltage (V)</th>
<th>V<sub>IN</sub> Logic Input Voltage V<sub>INH(min)/V<sub>NIL(max) (V)</th>
<th>V<sub>S or V<sub>D Analog Voltage Range (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>- 15</td>
<td>0</td>
<td>4/0.8</td>
<td>- 15 to 15</td>
</tr>
<tr>
<td>20</td>
<td>- 20</td>
<td>0</td>
<td>4/0.8</td>
<td>- 20 to 20</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
<td>4/0.8</td>
<td>0 to 15</td>
</tr>
</tbody>
</table>

Notes:
a. Application hints are for DESIGN AID ONLY, not guaranteed and not subject to production testing.

APPLICATIONS

The DG300B series of analog switches will switch positive analog signals while using a single positive supply. This facilitates their use in applications where only one supply is available. The trade-offs of using single supplies are:

1) Increased R_{DS(on)}.
2) Slower switching speed. The analog voltage should not go above or below the supply voltages which in single operation are V+ and 0 V. (See Input Switching Threshold vs. Positive Supply Voltage Curve.)

Figure 5. Single Supply Op. Amp. Switching
Voltage gain of the instrumentation amplifier is:

\[A_V = 1 + \frac{2R_2}{R_1} \]

(In the circuit shown, \(A_{V1} = 10.4 \), \(A_{V2} = 101 \))

Figure 6. Low Power Instrumentation Amplifier with Digitally Selectable Inputs and Gain
Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.
PDIP: 14-LEAD

Package Information

Vishay Siliconix

Package Dimensions

<table>
<thead>
<tr>
<th>Dim</th>
<th>MILLIMETERS</th>
<th>INCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3.81 - 5.08</td>
<td>0.150 - 0.200</td>
</tr>
<tr>
<td>A1</td>
<td>0.38 - 1.27</td>
<td>0.015 - 0.050</td>
</tr>
<tr>
<td>B</td>
<td>0.38 - 0.51</td>
<td>0.015 - 0.020</td>
</tr>
<tr>
<td>B1</td>
<td>0.89 - 1.85</td>
<td>0.035 - 0.065</td>
</tr>
<tr>
<td>C</td>
<td>0.20 - 0.30</td>
<td>0.008 - 0.012</td>
</tr>
<tr>
<td>D</td>
<td>17.27 - 19.30</td>
<td>0.680 - 0.760</td>
</tr>
<tr>
<td>E</td>
<td>7.62 - 8.26</td>
<td>0.300 - 0.325</td>
</tr>
<tr>
<td>E1</td>
<td>5.59 - 7.11</td>
<td>0.220 - 0.280</td>
</tr>
<tr>
<td>e1</td>
<td>2.29 - 2.79</td>
<td>0.090 - 0.110</td>
</tr>
<tr>
<td>eA</td>
<td>7.37 - 7.87</td>
<td>0.290 - 0.310</td>
</tr>
<tr>
<td>L</td>
<td>2.79 - 3.81</td>
<td>0.110 - 0.150</td>
</tr>
<tr>
<td>Q1</td>
<td>1.27 - 2.03</td>
<td>0.050 - 0.080</td>
</tr>
<tr>
<td>S</td>
<td>1.02 - 2.03</td>
<td>0.040 - 0.080</td>
</tr>
</tbody>
</table>

ECN: S-03946—Rev. C, 09-Jul-01

DWG: 5481

© Vishay Semiconductor Inc. 2011. All Rights Reserved.
RECOMMENDED MINIMUM PADS FOR SO-14

Recommended Minimum Pads
Dimensions in Inches/(mm)

0.022 (0.559)
0.050 (1.270)
0.028 (0.711)
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.