0.35-Ω Low-Voltage Dual SPDT Analog Switch

DESCRIPTION
The DG2535/DG2536 is a sub 1 Ω (0.35 Ω at 2.7 V) dual SPDT analog switches designed for low voltage applications. The DG2535/DG2536 has on-resistance matching (less than 0.05 Ω at 2.7 V) and flatness (less than 0.2 Ω at 2.7 V) that are guaranteed over the entire voltage range. Additionally, low logic thresholds make the DG2535/DG2536 an ideal interface to low voltage DSP control signals.

The DG2535/DG2536 has fast switching speed with break-before-make guaranteed. In the On condition, all switching elements conduct equally in both directions. Off-isolation and crosstalk is - 69 dB at 100 kHz.

The DG2535/DG2536 is built on Vishay Siliconix’s high-density low voltage CMOS process. An epitaxial layer is built in to prevent latchup. The DG2535/DG2536 contains the additional benefit of 2,000 V ESD protection.

In space saving MSOP-10 and DFN-10 lead (Pb)-free packages, the DG2535/DG2536 are high performance, low rON switches for battery powered applications. No lead (Pb) is used in the manufacturing process either inside the device/package or on the external terminations. As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with the lead (Pb)-free device terminations. For analog switching products manufactured in DFN packages, the lead (Pb)-free "-E3/E4" suffix is being used as a designator. Lead (Pb)-free DFN products purchased at any time will have either a nickel-palladium-gold device termination or a 100 % matte tin device termination. The different lead (Pb)-free materials are interchangeable and meet all JEDEC standards for reflow and MSL rating.

FEATURES
- Low Voltage Operation
- Low On-Resistance - rON: 0.35 Ω at 2.7 V
- -69 dB OIRR at 2.7 V, 100 kHz
- MSOP-10 and DFN-10 Packages
- ESD Protection > 2000 V
- Latch-Up Current > 300 mA (JESD 78)

BENEFITS
- Reduced Power Consumption
- High Accuracy
- Reduce Board Space
- 1.8 V Logic Compatible
- High Bandwidth

APPLICATIONS
- Cellular Phones
- Speaker Headset Switching
- Audio and Video Signal Routing
- PCMCIA Cards
- Battery Operated Systems
- Relay Replacement

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE

<table>
<thead>
<tr>
<th>Logic</th>
<th>NC1 and NC2</th>
<th>NO1 and NO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>1</td>
<td>OFF</td>
<td>ON</td>
</tr>
</tbody>
</table>

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Temp Range</th>
<th>Package</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40 to 85 °C</td>
<td>MSOP-10</td>
<td>DG2535DQ-T1-E3</td>
</tr>
<tr>
<td></td>
<td>DFN-10</td>
<td>DG2535DN-T1-E4</td>
</tr>
</tbody>
</table>
DG2535/DG2536
Vishay Siliconix

<table>
<thead>
<tr>
<th>ABSOLUTE MAXIMUM RATINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Referred V+ to GND</td>
</tr>
<tr>
<td>IN, COM, NC, NO<sup>a</sup></td>
</tr>
<tr>
<td>Continuous Current (NO, NC, COM)</td>
</tr>
<tr>
<td>Peak Current (Pulsed at 1 ms, 10 % duty cycle)</td>
</tr>
<tr>
<td>Storage Temperature (D Suffix)</td>
</tr>
<tr>
<td>ESD per Method 3015.7</td>
</tr>
<tr>
<td>Power Dissipation (Packages)<sup>b</sup></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Notes:
- a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b. All leads welded or soldered to PC Board.
- c. Derate 4.0 mW/°C above 70 °C
- d. Derate 14.9 mW/°C above 70 °C.

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

<table>
<thead>
<tr>
<th>SPECIFICATIONS (V+ = 3 V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Analog Switch</td>
</tr>
<tr>
<td>On-Resistance</td>
</tr>
<tr>
<td>r<sub>ON</sub> Flatness</td>
</tr>
<tr>
<td>On-Resistance Match Between Channels<sup>d</sup></td>
</tr>
<tr>
<td>Switch Off Leakage Current</td>
</tr>
<tr>
<td>Channel-On Leakage Current</td>
</tr>
<tr>
<td>Digital Control</td>
</tr>
<tr>
<td>Input Low Voltage</td>
</tr>
<tr>
<td>Input Capacitance</td>
</tr>
<tr>
<td>Input Current</td>
</tr>
</tbody>
</table>
SPECIFICATIONS (V+ = 3 V)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions Otherwise Unless Specified</th>
<th>Temp(^a)</th>
<th>Limits -40 to 85 °C</th>
<th>Min(^b)</th>
<th>Typ(^c)</th>
<th>Max(^b)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Characteristics</td>
<td></td>
<td></td>
<td>Room Full</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-On Time</td>
<td>t(_{ON})</td>
<td>(V_{NO}) or (V_{NC} = 2.0) V, (R_L = 50) (\Omega), (C_L = 35) pF</td>
<td>Room Full</td>
<td></td>
<td>52</td>
<td>82</td>
<td>90</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-Off Time</td>
<td>t(_{OFF})</td>
<td></td>
<td>Room Full</td>
<td></td>
<td>43</td>
<td>73</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>Break-Before-Make Time</td>
<td>t(_d)</td>
<td></td>
<td>Full</td>
<td></td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charge Injection(^d)</td>
<td>Q(_{INJ})</td>
<td>(C_L = 1) nF, (V_{GEN} = 1.5) V, (R_{GEN} = 0) (\Omega)</td>
<td>Room</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td>pC</td>
</tr>
<tr>
<td>Off-Isolation(^d)</td>
<td>OIRR</td>
<td>(R_L = 50) (\Omega), (C_L = 5) pF, (f = 100) kHz</td>
<td>Room</td>
<td></td>
<td>-69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crosstalk(^d)</td>
<td>X(_{TALK})</td>
<td></td>
<td>Room</td>
<td></td>
<td>-69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N_O, N_C) Off Capacitance(^d)</td>
<td>C(_{NO}(off))</td>
<td>(V_{IN} = 0) or (V+), (f = 1) MHz</td>
<td>Room</td>
<td></td>
<td>145</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Channel-On Capacitance(^d)</td>
<td>C(_{NO}(on))</td>
<td>(V_{IN} = 0) or (V+), (f = 1) MHz</td>
<td>Room</td>
<td></td>
<td>406</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply</td>
<td></td>
<td></td>
<td>Full</td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
</tbody>
</table>

Notes:
- a. Room = 25 °C, Full = as determined by the operating suffix.
- b. Typical values are for design aid only, not guaranteed nor subject to production testing.
- c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- d. Guarantee by design, nor subjected to production test.
- e. \(V_{IN}\) = input voltage to perform proper function.
DG2535/DG2536
Vishay Siliconix

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

rON vs. VCOM and Supply Voltage

- **V+ = 1.8 V**
- **V+ = 2.0 V**
- **V+ = 2.7 V**
- **V+ = 3.0 V**
- **V+ = 3.3 V**

- **T = 25 °C**
 - **I_A = 100 mA**

rON vs. Analog Voltage and Temperature (NC1)

- **V+ = 3.0 V**
- **V+ = 100 mA**

Supply Current vs. Temperature

- **V+ = 3.0 V**
- **V_IN = 0 V**

Leakage Current vs. Temperature

- **V+ = 3.0 V**
- **I_COM(on)**
- **I_COM(off)**
- **I_NO(off)**
- **I_NC(off)**

Supply Current vs. Input Switching Frequency

Leakage Current vs. Temperature

Leakage vs. Analog Voltage
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Switching Time vs. Temperature

- $t_{ON} V_+ = 2 \text{ V}$
- $t_{OFF} V_+ = 3 \text{ V}$
- $t_{ON} V_+ = 3 \text{ V}$
- $t_{OFF} V_+ = 2 \text{ V}$

Switching Threshold vs. Supply Voltage

- V_T vs. V_+
- V_T vs. Supply Voltage

Insertion Loss, Off-isolation

- Insertion Loss, Crosstalk vs. Frequency
- $V_+ = 3 \text{ V}$
- $R_L = 50 \Omega$

Charge Injection vs. Analog Voltage

- Q vs. V_{COM} & V_{INH}
- Logic input waveforms inverted for switches that have the opposite logic sense.

TEST CIRCUITS

```
Logic Input
IN
GND
Switch Input
V+
NO or NC
COM
Switch Output
VOUT
RL 300 \Omega
CL 35 \text{ pF}

V_{OUT} = V_{COM} \left( \frac{R_L}{R_L + R_{ON}} \right)
```

Figure 1. Switching Time
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?72939.
Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.