

Low Voltage, Low On-Resistance, Dual DPDT/Quad SPDT Analog Switch

DESCRIPTION

The DG2788, DG2789 are monolithic CMOS analog switching products designed for high performance switching of analog signals. Combining low power, high speed, low on-resistance and small physical size, the DG2788, DG2789 are ideal for portable and battery powered applications requiring high performance and efficient use of board space.

The DG2788, DG2789 are built on Vishay Siliconix's low voltage process. An epitaxial layer prevents latchup. Break-before-make is guaranteed.

The switch conducts equally well in both directions when on, and blocks up to the power supply level when off. The DG2788 is configured as a dual Double Pole Double Throw switches while the DG2789 is configured as a Quad Single Pole Double Throw. The DG2789 has one control pin for all four SPDT switches and also has an enable pin that can turn all switches off.

The DG2788 and DG2789 comes in a small miniQFN-16 lead package (2.6 mm x 1.8 mm x 0.75 mm).

As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with the lead (Pb)-free device terminations and is 100 % RoHS compliant.

FEATURES

- Wide operation voltage range: 1.65 V to 4.3 V
- Low on-resistance R_{ON} : 0.4 Ω typ. at 2.7 V
- Fast switching: t_{ON} = 47 ns
 t_{OFF} = 15 ns

NO1, 2, 3 and 4

OFF

ON

ON

OFF

- miniQFN-16 package
- Latch-up current > 300 mA (JESD78)
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

BENEFITS

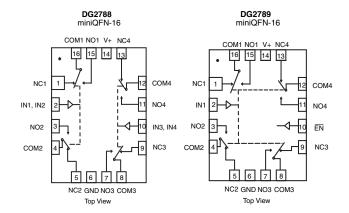
- Reduced power consumption
- High accuracy
- Reduce board space
- · Low voltage logic compatible
- · High bandwidth

APPLICATIONS

- Cellular phones
- Speaker headset switching
- · Audio and video signal routing

TRUTH TABLE (DG2788)

PCMCIA cards


LOGIC

0

0

Battery operated systems

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE (DG2789)								
EN LOGIC	IN LOGIC	NC1, 2, 3 and 4	NO1, 2, 3 and 4					
0	0	ON	OFF					

OFF

OFF

NC1, 2, 3 and 4

ON

OFF

	Axx	
Pin 1 →	•	

Device Marking: Axx for DG2788 Bxx for DG2789 xx = Date/Lot Traceability Code Note: Pin 1 has long lead

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C, unless otherwise noted)								
PARAMETER	SYMBOL	LIMIT	UNIT					
Reference to GND	V+	-0.3 to 5		V				
neterence to GND	IN, COM, NC, NO a		-0.3 to (V+ + 0.3)	V				
Current (Any terminal except NO, NC, or 0		30						
Continuous Current (NO, NC, or COM)		± 300	mA					
Peak Current (Pulsed at 1 ms, 10 % duty		± 500						
Storage Temperature (D suffix)		-65 to 150	- °C					
Package Solder Reflow Conditions d	miniQFN-16		250					
Power Dissipation (Packages) ^b	miniQFN-16 ^c		525	mW				

Notes

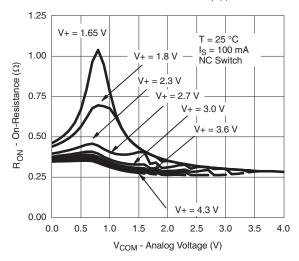
- a. Signals on NC, NO, or COM, or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- b. All leads welded or soldered to PC board.
- c. Derate 6.6 mW/°C above 70 °C.
- d. Manual soldering with iron is not recommended for leadless components. The miniQFN-16 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED	TEMP.a	LIMITS -40 °C to 85 °C			UNIT
		$V+ = 3 V$, ± 10 %, $V_{IN} = 0.5$ or 1.4 V $^{\rm e}$		MIN. b	TYP. °	MAX. b	J.411
Analog Switch							
Analog Signal Range ^d	V_{NO}, V_{NC}, V_{COM}		Full	0	-	V+	V
		$V+ = 2.7 \text{ V}, V_{COM} = 0.5 \text{ V}, I_{NO}, I_{NC} = 100 \text{ mA}$	Room	-	0.4	0.5	
On-Resistance	R_{ON}	$V+ = 2.7 \text{ V}, V_{COM} = 1.5 \text{ V}, I_{NO}, I_{NC} = 100 \text{ mA}$	HOOIII	1	0.33	0.5	
			Full	-	-	0.56	Ω
R _{ON} Flatness ^d	R _{ON} Flatness	$V+ = 2.7 \text{ V}, V_{COM} = 0 \text{ to V+}, \\ I_{NO}, I_{NC} = 100 \text{ mA}$	Room	-	0.1	0.15	 I
R _{ON} Match ^d	ΔR_{ON}	1NO, 1NC = 100 111A	Room	ı	0.05	-	
	I _{NO(off)} ,		Room	-1	-	1	
Switch Off Leakage	I _{NC(off)}	$V+ = 3.3 \text{ V}, V_{NO}, V_{NC} = 0.3 \text{ V}/3 \text{ V},$	Full	-10	-	10	
Current	1	$V_{COM} = 3 \text{ V}/0.3 \text{ V}$	Room	-1	-	1	- A
	I _{COM(off)}		Full	-10	-	10	nA
Channel-On Leakage	1	V 00VV V 00V0V	Room	-1	-	1	
Current	I _{COM(on)}	$V+ = 3.3 \text{ V}, V_{NO}, V_{NC} = V_{COM} = 0.3 \text{ V/3 V}$	Full	-10	-	10	
Digital Control							
Input High Voltage	V _{INH}		Full	1.4	-	-	V
Input Low Voltage	V _{INL}		Full	-	-	0.5	
Input Capacitance	C _{IN}		Full	-	6	-	pF
Input Current	I _{INL} or I _{INH}	V _{IN} = 0 or V+	Full	-1	-	1	μΑ
Dynamic Characteristics							
T On Time .	t _{ON}		Room	-	47	72	ns
Turn-On Time		VV 15VB 5000 05-5	Full	-	-	75	
T O"T"	t _{OFF}	V_{NO} or V_{NC} = 1.5 V, R_L = 50 Ω , C_L = 35 pF	Room	-	15	43	
Turn-Off Time			Full	-	-	45	
Break-Before-Make Time	t _d		Full	1	-	-	
Charge Injection d	Q _{INJ}	C_L = 1 nF, V_{GEN} = 0 V, R_{GEN} = 0 Ω	Room	-	87	-	рС
O(() 1 11 d	0.100	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$		-	-69	-	
Off-Isolation ^d	OIRR	R _L = 50 Ω, C _L = 5 pF, f = 1 MHz		-	-49	-	ם אם
O constall d f		$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$	Room	-	-106	-	dB
Crosstalk ^{d, f}	X _{TALK}	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$	1	-	-96	-	
NO NO Off Constitution of	C _{NO(off)}		Room	-	81	-	pF
NO, NC Off Capacitance ^d	C _{NC(off)}		Room	-	81	-	
Observation of the state of the	C _{NO(on)}	f = 1 MHz	Room	-	186	-	
Channel-On Capacitance d	C _{NC(on)}		Room	-	186	-	
Power Supply							
Power Supply Range	V+			1.65	-	4.3	V
Power Supply Current	l+	$V_{IN} = 0$ or V+	Full	-	_	1	μA

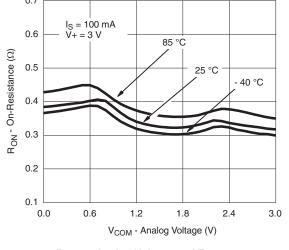
www.vishay.com

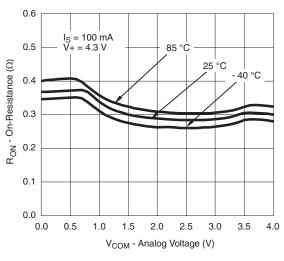
Vishay Siliconix

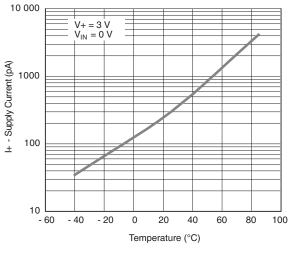
SPECIFICATIONS (V+ = 3 V)									
PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED	TEMP.a	LIMITS -40 °C to 85 °C			UNIT		
		V+ = 3 V, ± 10 %, V _{IN} = 0.5 or 1.4 V ^e		MIN. b	TYP. c	MAX. b			
Analog Switch									
Analog Signal Range ^d	V_{NO}, V_{NC}, V_{COM}		Full	0	-	V+	V		
		$V+ = 4.3 \text{ V}, V_{COM} = 0.9 \text{ V}, I_{NO}, I_{NC} = 100 \text{ mA}$	Room	-	0.32	0.45			
On-Resistance	R _{ON}	$V+ = 4.3 \text{ V}, V_{COM} = 2.5 \text{ V}, I_{NO}, I_{NC} = 100 \text{ mA}$	HOOIII	ı	0.27				
			Full	-	-	0.5	Ω		
R _{ON} Flatness ^d	R _{ON} Flatness	$V+ = 4.3 \text{ V}, V_{COM} = 0 \text{ to V+},$ $I_{NO}, I_{NC} = 100 \text{ mA}$	Room	-	0.1	0.15	22		
R _{ON} Match ^d	ΔR_{ON}		Room	-	0.03	-			
	I _{NO(off)} ,		Room	-10	-	10	nA		
Switch-Off Leakage	I _{NC(off)}	$V+ = 4.3 \text{ V}, V_{NO}, V_{NC} = 0.3 \text{ V/4 V},$	Full	-100	-	100			
Current d	I _{COM(off)}	V _{COM} = 4 V/0.3 V	Room	-10	-	10			
			Full	-100	-	100			
Channel-On Leakage		V. 40V V V 0V/4V	Room	-10	-	10			
Current d	ICOM(on)	$V+ = 4.3 \text{ V}, V_{NO}, V_{NC} = V_{COM} = 3 \text{ V}/4 \text{ V}$	Full	-100	=	100			
Digital Control									
Input High Voltage	V _{INH}		Full	1.6	-	-	V		
Input Low Voltage	V_{INL}		Full	ı	-	0.5	V		
Input Capacitance	C _{IN}		Full	ı	6	-	pF		
Input Current	I _{INL} or I _{INH}	$V_{IN} = 0$ or V+	Full	-1	-	1	μΑ		
Dynamic Characteristics									
Charge Injection ^d	Q_{INJ}	$C_L = 1 \text{ nF}, V_{GEN} = 0 \text{ V}, R_{GEN} = 0 \Omega$	Room	-	105	-	рC		
N _O , N _C Off Capacitance ^d	C _{NO(off)}		Room	-	79	-			
NO, NC On Capacitance	C _{NC(off)}	f = 1 MHz	Room	-	79	-	pF		
Channel-On Capacitance d	C _{NO(on)}	1 – 1 WH 12	Room	-	183	-	ы		
Onamier-On Oapacitance	C _{NC(on)}		Room	-	183	-			
Power Supply									
Power Supply Range	V+			1.65	-	4.3	V		
Power Supply Current	l+	$V_{IN} = 0$ or V+	Full	ı	-	1	μΑ		

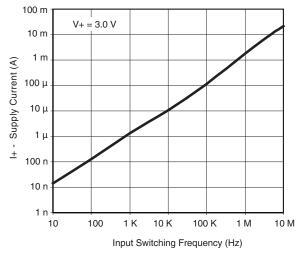

Notes

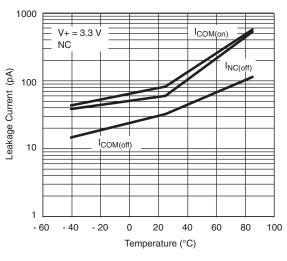
- a. Room = 25 °C, Full = as determined by the operating suffix.
- b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- c. Typical values are for design aid only, not guaranteed nor subject to production testing.
- d. Guarantee by design, not subjected to production test.
- e. V_{IN} = input voltage to perform proper function.
- f. Crosstalk measured between channels.


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

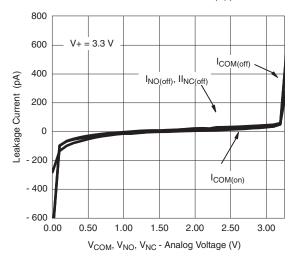

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

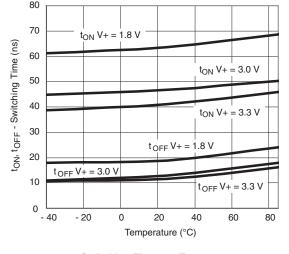

R_{ON} vs. V_{COM} and Supply Voltage

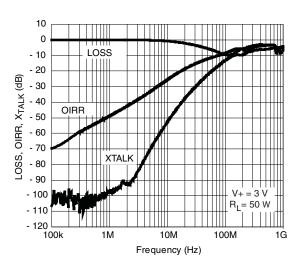

R_{ON} vs. Analog Voltage and Temperature

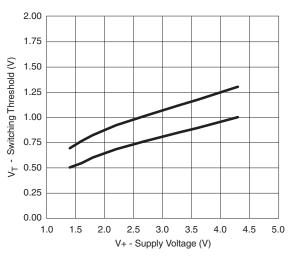

R_{ON} vs. Analog Voltage and Temperature

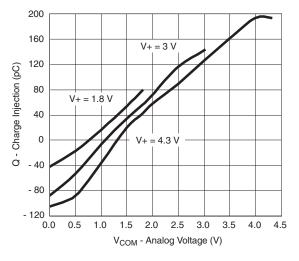
Supply Current vs. Temperature


Supply Current vs. Input Switching Frequency

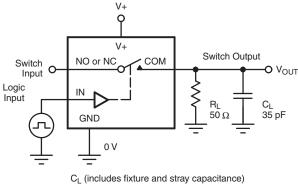

Leakage Current vs. Temperature

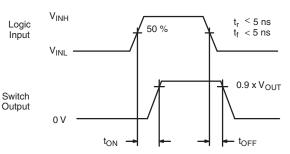

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)


Leakage vs. Analog Voltage


Switching Time vs. Temperature

Insertion Loss, Off-Isolation Crosstalk vs. Frequency


Switching Threshold vs. Supply Voltage



Charge Injection vs. Analog Voltage

TEST CIRCUITS

Logic "1" = Switch On

Logic input waveforms inverted for switches that have the opposite logic sense.

 $V_{OUT} = V_{COM} \left(\frac{R_L}{R_L + R_{ON}} \right)$

Fig. 1 - Switching Time

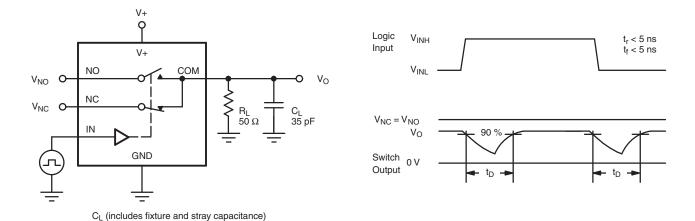


Fig. 2 - Break-Before-Make Interval

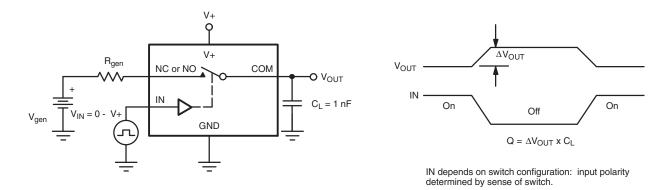


Fig. 3 - Charge Injection

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

TEST CIRCUITS

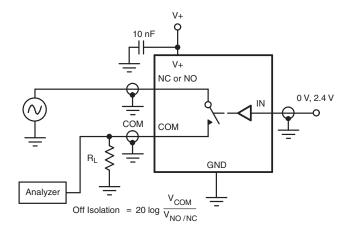


Fig. 4 - Off-Isolation

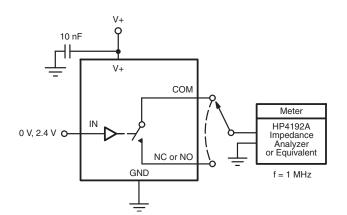
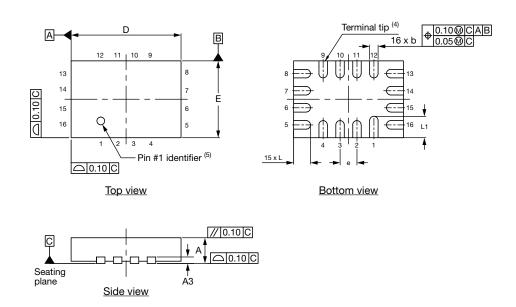



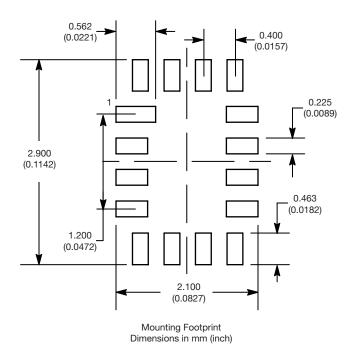
Fig. 5 - Channel Off/On Capacitance

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg273863.

Thin miniQFN16 Case Outline

DIMENSIONS		MILLIMETERS (1)		INCHES			
DIMENSIONS	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
А	0.50	0.55	0.60	0.020	0.022	0.024	
A1	0	-	0.05	0	-	0.002	
A3		0.15 ref.		0.006 ref.			
b	0.15	0.20	0.25	0.006	0.010		
D	2.50	2.60	2.70	0.098	0.102	0.106	
е		0.40 BSC 0.016 BS					
Е	1.70	1.80	1.90	0.067	0.071	0.075	
L	0.35	0.40	0.45	0.014	0.016	0.018	
L1	0.45	0.50	0.55	0.018	0.020	0.022	
N (3)	16			16			
Nd ⁽³⁾	4 4						
Ne ⁽³⁾		4		4			

Notes


- (1) Use millimeters as the primary measurement.
- (2) Dimensioning and tolerances conform to ASME Y14.5M. 1994.
- (3) N is the number of terminals. Nd and Ne is the number of terminals in each D and E site respectively.
- (4) Dimensions b applies to plated terminal and is measured between 0.15 mm and 0.30 mm from terminal tip.
- (5) The pin 1 identifier must be existed on the top surface of the package by using identification mark or other feature of package body.
- (6) Package warpage max. 0.05 mm.

ECN: T16-0226-Rev. B, 09-May-16

DWG: 6023

RECOMMENDED MINIMUM PADS FOR MINI QFN 16L

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.