

www.vishay.com

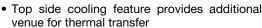
Vishay Siliconix

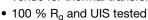
COMPLIANT

HALOGEN

FREE

N-Channel 40 V (D-S) MOSFET

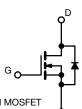

PowerPAK® SO-8DC


Top View

PRODUCT SUMMARY							
V _{DS} (V)	40						
$R_{DS(on)}$ max. (Ω) at $V_{GS} = 10 \text{ V}$	0.00088						
$R_{DS(on)}$ max. (Ω) at $V_{GS} = 4.5 \text{ V}$	0.00116						
Q _g typ. (nC)	53						
I _D (A) ^{a, g}	100						
Configuration	Single						

FEATURES

- TrenchFET® Gen IV power MOSFET
- Very low R_{DS} Q_g figure-of-merit (FOM)
- Tuned for the lowest R_{DS} Q_{oss} FOM



• Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

APPLICATIONS

- · Synchronous rectification
- OR-ing
- High power density DC/DC
- · Motor drive control
- Battery management
- · Load switch

ı	ᅪ┐
G O	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓
N-Channel MOSFET	٥
	5

ORDERING INFORMATION	
Package	PowerPAK SO-8DC
Lead (Pb)-free and halogen-free	SiDR402DP-T1-GE3

PARAMETER		SYMBOL	LIMIT	UNIT
Drain-source voltage		V _{DS}	40	V
Gate-source voltage		V _{GS}	+20, -16	v
	T _C = 25 °C		100 ^g	
Continuous drain surrent (T. 150 °C)	T _C = 70 °C		100 ^g	
Continuous drain current (T _J = 150 °C)	T _A = 25 °C	I _D	64.6 ^{b, c}	
	T _A = 70 °C		51.7 ^{b, c}	_
Pulsed drain current (t = 100 μs)	I _{DM}	400	A	
Continuous accuracy during disade accuracy.	T _C = 25 °C		100 ^a	
Continuous source-drain diode current	T _A = 25 °C	I _S	5.6 ^{b, c}	
Single pulse avalanche current	L = 0.1 mH	I _{AS}	50	
Single pulse avalanche Energy	L = U. I MIH	E _{AS}	125	mJ
	T _C = 25 °C		125	
Maximum power dissipation	T _C = 70 °C		80	□ w
	T _A = 25 °C	P _D	6.25 ^{b, c}	VV
	T _A = 70 °C		4 b, c	
Operating junction and storage temperature rai	T _J , T _{stg}	-55 to +150	°C	
Soldering recommendations (peak temperature	. 3	260		

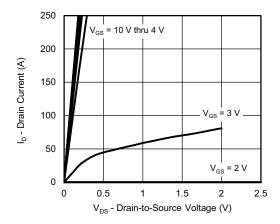
THERMAL RESISTANCE RATINGS						
PARAMETER		SYMBOL	TYPICAL	MAXIMUM	UNIT	
Maximum junction-to-ambient b, f	t ≤ 10 s	R _{thJA}	15	20		
Maximum junction-to-case (drain)	Steady state	R_{thJC}	0.8	1	°C/W	
Maximum junction-to-case (source)	Steady state	R_{thJC}	1.1	1.4		

Notes

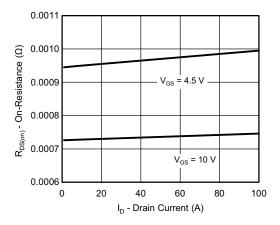
- a. Based on T_C = 25 °C
- b. Surface mounted on 1" x 1" FR4 board
- t = 10 s
- See solder profile (www.vishay.com/doc?73257). The PowerPAK SO-8DC is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection
- e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components
- Maximum under steady state conditions is 54 °C/W
- g. Package limited

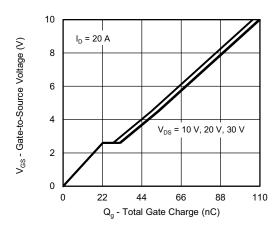
Vishay Siliconix

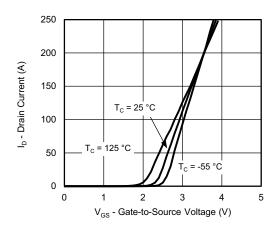
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Static	<u> </u>					
Drain-source breakdown voltage	V_{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	40	-	-	V
V _{DS} temperature coefficient	$\Delta V_{DS}/T_{J}$		-	24	-	14/00
V _{GS(th)} temperature coefficient	$\Delta V_{GS(th)}/T_J$	I _D = 250 μA	-	-5.4	-	mV/°C
Gate-source threshold voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1.1	-	2.3	V
Gate-source leakage	I _{GSS}	I_{GSS} $V_{DS} = 0 \text{ V}, V_{GS} = +20, -16 \text{ V}$		-	± 100	nA
7	,	V _{DS} = 40 V, V _{GS} = 0 V	-	-	1	
Zero gate voltage drain current	I _{DSS}	V _{DS} = 40 V, V _{GS} = 0 V, T _J = 55 °C	-	-	10	μΑ
On-state drain current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	50	-	-	Α
Duning and the second of the s	Б	V _{GS} = 10 V, I _D = 20 A	-	0.00073	0.00088	0
Drain-source on-state resistance ^a	R _{DS(on)}	V _{GS} = 4.5 V, I _D = 15 A	-	0.00096	0.00116	Ω
Forward transconductance a	9 _{fs}	$V_{DS} = 10 \text{ V}, I_D = 20 \text{ A}$	-	147	-	S
Dynamic ^b	·			•		
Input capacitance	C _{iss}		-	9100	-	
Output capacitance	C _{oss}		-	1650	-	рF
Reverse transfer capacitance	C _{rss}	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	-	210	-	·
C _{rss} /C _{iss} ratio			-	0.024	0.048	
		$V_{DS} = 20 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 20 \text{ A}$	-	110	165	
Total gate charge	Qg		-	53	80	
Gate-source charge	Q_{gs}	$V_{DS} = 20 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 20 \text{ A}$	-	22.5	-	nC
Gate-drain charge	Q _{gd}		-	9.5	-	
Output charge	Q _{oss}	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}$	-	75	-	
Gate resistance	R _q	f = 1 MHz	0.3	0.88	1.5	Ω
Turn-on delay time	t _{d(on)}		-	15	30	
Rise time	t _r	$V_{DD} = 20 \text{ V}, R_{L} = 1 \Omega$	-	42	84	
Turn-off delay time	t _{d(off)}	$I_D \cong 20 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$	-	42	84	
Fall time	t _f		-	10	20	
Turn-on delay time	t _{d(on)}		-	45	90	ns
Rise time	t _r	$V_{DD} = 20 \text{ V}, R_1 = 1 \Omega$	-	100	200	
Turn-off delay time	t _{d(off)}	$I_D \cong 20 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$	-	56	112	
Fall time	tf		-	40	80	
Drain-Source Body Diode Characteristic	s					
Continuous source-drain diode current	Is	T _C = 25 °C	-	-	100	
Pulse diode forward current (t _p = 100 μs)	I _{SM}		-	-	400	Α
Body diode voltage	V_{SD}	I _S = 10 A	-	0.73	1.1	V
Body diode reverse recovery time	t _{rr}	-	-	65	130	ns
Body diode reverse recovery charge	Q _{rr}	$I_F = 20 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	90	180	nC
Reverse recovery fall time	ta	$T_J = 25 ^{\circ}C$	-	37	-	
everse recovery rise time t _b			_	30	-	ns

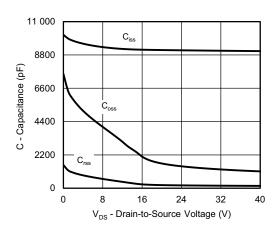

Notes

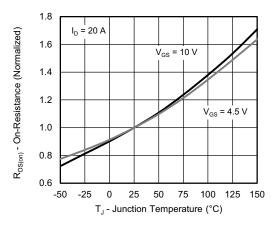
- a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%$
- b. Guaranteed by design, not subject to production testing


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

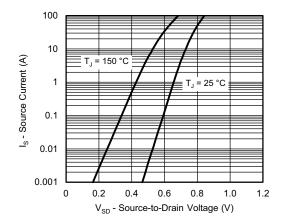

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

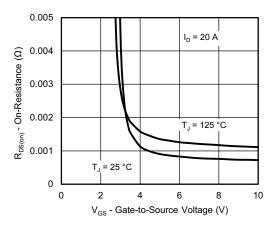

Output Characteristics

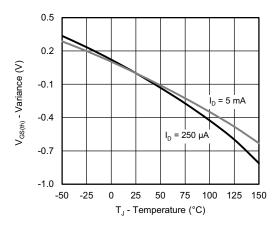

On-Resistance vs. Drain Current

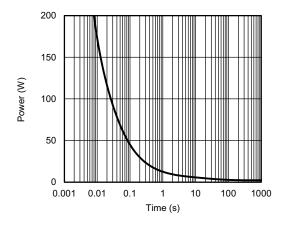

Gate Charge

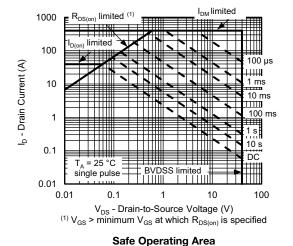
Transfer Characteristics


Capacitance

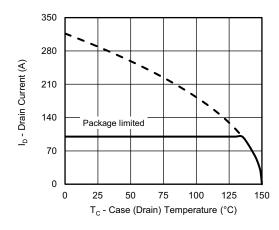

On-Resistance vs. Junction Temperature

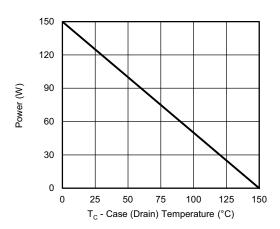

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Source-Drain Diode Forward Voltage


On-Resistance vs. Gate-to-Source Voltage

Threshold Voltage

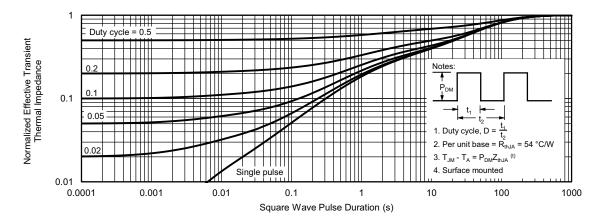



Single Pulse Power, Junction-to-Ambient

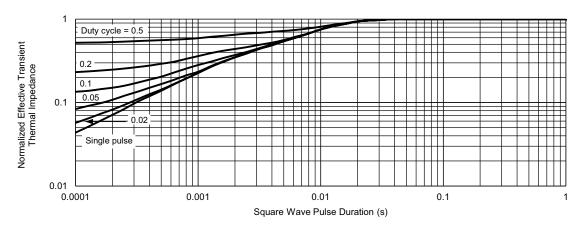
Vishay Siliconix

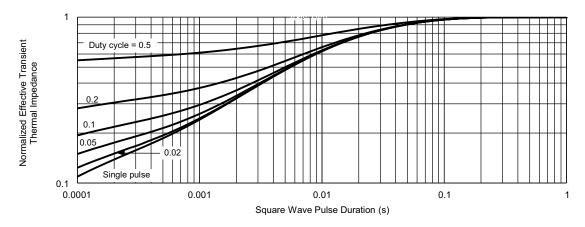
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Power, Junction-to-Case


Current Derating ^a

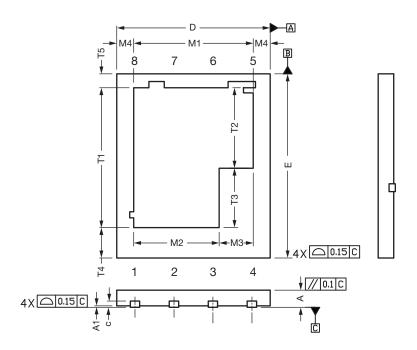
Note

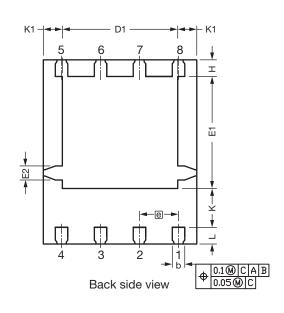

a. The power dissipation P_D is based on T_J (max.) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Ambient

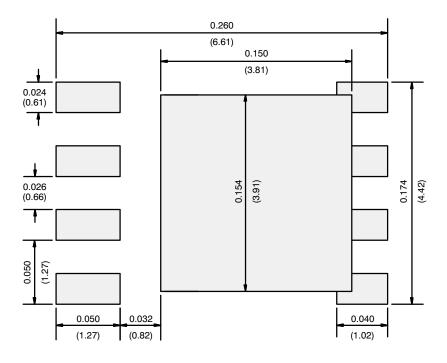
Normalized Thermal Transient Impedance, Junction-to-Case (drain)


Normalized Thermal Transient Impedance, Junction-to-Case (source)


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg275606.

DWG: 6048

PowerPAK® SO-8 Double Cooling Case Outline



DIM.		MILLIMETERS			INCHES		
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α	0.51	0.56	0.61	0.020	0.022	0.024	
A1	0.00	0.02	0.05	0.000	0.001	0.002	
b	0.36	0.41	0.46	0.014	0.016	0.018	
С	0.15	0.20	0.25	0.006	0.008	0.010	
D	4.90	5.00	5.10	0.193	0.197	0.201	
D1	3.71	3.76	3.81	0.146	0.148	0.150	
е		1.27 BSC			0.050 BSC		
Е	5.90	6.00	6.10	0.232	0.236	0.240	
E1	3.60	3.65	3.70	0.142	0.144	0.146	
E2		0.46 typ.			0.018 typ.		
Н	0.49	0.54	0.59	0.019	0.021	0.023	
K	1.22	1.27	1.32	0.048	0.050	0.052	
K1		0.64 typ.		0.025 typ.			
L	0.49	0.54	0.59	0.019	0.021	0.023	
M1	3.8	3.90	4.00	0.150	0.154	0.158	
M2	2.69	2.79	2.89	0.106	0.110	0.114	
МЗ	1.01	1.11	1.21	0.040	0.044	0.048	
M4	0.56 typ.				0.022 typ.		
N		8			8		
T1	4.46	4.56	4.66	0.176	0.180	0.184	
T2	2.53	2.63	2.73	0.100	0.104	0.108	
T3	1.83	1.93	2.03	0.072	0.076	0.080	
T4	0.97 typ.			0.038 typ.			
T5		0.48 typ.		0.019 typ.			

Revison: 29-Jul-2024 1 Document Number: 75846

RECOMMENDED MINIMUM PADS FOR PowerPAK® SO-8 Single

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

APPLICATION NOTE

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.