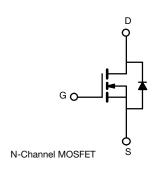


Automotive N-Channel 20 V (D-S) 175 °C MOSFET


PRODUCT SUMMARY				
V _{DS} (V)	20			
$R_{DS(on)}$ (Ω) at V_{GS} = 10 V	0.0035			
$R_{DS(on)}$ (Ω) at V_{GS} = 4.5 V	0.0045			
I _D (A)	100			
Configuration	Single			
Package	TO-263			

FEATURES

- TrenchFET[®] power MOSFET
- Package with low thermal resistance
- 100 % $R_{\rm q}$ and UIS tested
- AEC-Q101 qualified
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

ABSOLUTE MAXIMUM RATINGS ($T_C = 25 \text{ °C}$, unless otherwise noted)				
PARAMETER		SYMBOL	LIMIT	UNIT
Drain-Source Voltage		V _{DS}	20	V
Gate-Source Voltage		V _{GS}	± 20	v
Continuous Drain Current	$T_C = 25 \ ^{\circ}C \ ^{a}$	I _D	100	
Continuous Drain Current	T _C = 125 °C		80	
Continuous Source Current (Diode Conductio	n) ^a	ا _S	100	А
Pulsed Drain Current ^b		I _{DM}	220	
Single Pulse Avalanche Current	L = 0.1 mH	I _{AS}	45	
Single Pulse Avalanche Energy	L = 0.1 mm	E _{AS}	101	mJ
Maximum Power Dissipation ^b	T _C = 25 °C	P _D	150	w
Maximum Fower Dissipation ~	T _C = 125 °C		50	vv
Operating Junction and Storage Temperature	Range	T _J , T _{stg}	-55 to +175	°C

THERMAL RESISTANCE RATINGS				
PARAMETER		SYMBOL	LIMIT	UNIT
Junction-to-Ambient	PCB Mount ^c	R _{thJA}	40	°C/W
Junction-to-Case (Drain)		R _{thJC}	1	0/10

Notes

a. Package limited.

b. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.

c. When mounted on 1" square PCB (FR4 material).

SQM100N02-3m5L

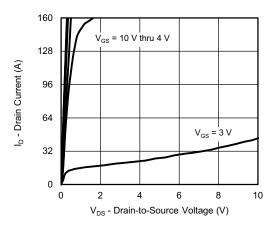
Vishay Siliconix

$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT	
$ \begin{array}{c c c c c c c c c c } \hline \mbox{Gate-Source Threshold Voltage} & V_{GS(th)} & V_{DS} = V_{GS, \ \ b} = 250 \ \mu \mbox{A} & 1.5 & 2.0 & 2.5 \\ \hline \mbox{Gate-Source Leakage} & I_{GSS} & V_{DS} = 0 \ \ V_{VS} = 0 \ \ V_{VS} = 20 \ \ V & - & - & 1 \\ \hline \mbox{V}_{GS} = 0 \ \ V_{VS} = 20 \ \ V & - & - & 1 \\ \hline \mbox{V}_{GS} = 0 \ \ V_{VS} = 20 \ \ V & - & - & 50 \\ \hline \mbox{V}_{GS} = 0 \ \ V_{VS} = 20 \ \ V & V_{DS} = 20 \ \ V & - & - & 50 \\ \hline \mbox{V}_{GS} = 0 \ \ V & V_{DS} = 20 \ \ V & V_{DS} = 20 \ \ V & - & - & 50 \\ \hline \mbox{V}_{GS} = 0 \ \ V & V_{DS} = 20 \ \ V & V_{DS} = 20 \ \ V & - & - & 50 \\ \hline \mbox{V}_{GS} = 0 \ \ V & V_{DS} = 20 \ \ V & V_{DS} = 20 \ \ V & - & - & 50 \\ \hline \mbox{V}_{GS} = 0 \ \ V & V_{DS} = 20 \ \ V & V_{DS} = 20 \ \ V & - & - & - & 50 \\ \hline \mbox{V}_{GS} = 0 \ \ V & V_{DS} = 20 \ \ V & V_{DS} = 20 \ \ V & V_{DS} = 50 \ \ \ - & - & - & 250 \\ \hline \mbox{Parine-Source On-State Resistance}^{A} & \ \ \mbox{P}_{DS(on)} & \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Static				<u> </u>	I			
$ \begin{array}{ c c c c } \hline \mbox{Gate-Source Threshold Voltage} & V_{GS(th)} & V_{DS} = V_{GS}, \mbox{I}_D = 250 \ \mu A & 1.5 & 2.0 & 2.5 & 1.5 \\ \hline \mbox{Gate-Source Leakage} & I_{GSS} & V_{DS} = 0 \ V, \ V_{DS} = 20 \ V & - & - & 1 & 1 & 1.5 \\ \hline \mbox{V}_{DS} = 0 \ V, \ V_{DS} = 20 \ V, \ V_{DS} = 20 \ V & - & - & 50 & 1.5 & 1.5 \\ \hline \mbox{V}_{DS} = 0 \ V & V_{DS} = 20 \ V, \ V_{DS} = 20 \ V, \ V_{DS} = 125 \ C & - & - & 50 & 1.5 & $	Drain-Source Breakdown Voltage	V _{DS}	V _{GS} :	$V_{GS} = 0 V, I_D = 250 \mu A$		-	-	V	
$ \begin{array}{ c c c c c c } \hline V_{GS} = 0 V & V_{DS} = 20 V & - & - & 1 \\ \hline V_{GS} = 0 V & V_{DS} = 20 V , T_J = 125 °C & - & - & 50 \\ \hline V_{GS} = 0 V & V_{DS} = 20 V , T_J = 125 °C & - & - & 250 & \mu \\ \hline V_{GS} = 0 V & V_{DS} = 20 V , T_J = 175 °C & - & - & 250 & \mu \\ \hline V_{GS} = 0 V & V_{DS} \geq 5 V & 50 & - & - & 4 \\ \hline V_{GS} = 0 V & V_{DS} \geq 5 V & 50 & - & - & 4 \\ \hline V_{GS} = 10 V & I_D = 30 A & - & 0.0020 & 0.0035 \\ \hline V_{GS} = 10 V & I_D = 30 A , T_J = 125 °C & - & - & 0.0050 \\ \hline V_{GS} = 10 V & I_D = 30 A , T_J = 125 °C & - & - & 0.0050 \\ \hline V_{GS} = 10 V & I_D = 30 A , T_J = 125 °C & - & - & 0.0050 \\ \hline V_{GS} = 10 V & I_D = 30 A , T_J = 175 °C & - & - & 0.0050 \\ \hline V_{GS} = 10 V & I_D = 30 A , T_J = 175 °C & - & - & 0.0058 \\ \hline Porward Transconductance b & gfs & V_{DS} = 15 V, I_D = 30 A & - & 186 & - & S \\ \hline Dynamic b & & & & & & \\ \hline Input Capacitance & C_{Iss} & & & & & & \\ \hline Dut Capacitance & C_{Iss} & & & & & & & & \\ \hline Dut Capacitance & C_{Gss} & & & & & & & & & \\ \hline Total Gate Charge ° & Q_{g4} & & & & & & & & & & & & & \\ \hline Total Gate Charge ° & Q_{g4} & & & & & & & & & & & & & & \\ \hline Turn-On Delay Time ° & T_{G} & & & & & & & & & & & & & & & \\ \hline Turn-On Delay Time ° & T_{G} & & & & & & & & & & & & & & & & \\ \hline Turn-Of Delay Time ° & T_{G} & & & & & & & & & & & & & & & & \\ \hline Source-Drain Diode Ratings and Characteristics ^b \\ \hline Pulsed Current^a & I_{SM} & & & & & & & & & & & & & & & & & & &$	Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} =	= V _{GS} , I _D = 250 μΑ	1.5	2.0	2.5	v	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Leakage	I _{GSS}	V _{DS} =	0 V, V _{GS} = ± 20 V	-	-	± 100	nA	
$ \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			$V_{GS} = 0 V$	V _{DS} = 20 V	-	-	1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V$	V _{DS} = 20 V, T _J = 125 °C	-	-	50	μA	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$V_{GS} = 0 V$	V _{DS} = 20 V, T _J = 175 °C	-	-	250	μA	
$ \begin{array}{ c c c c c c } \label{eq:barrier} \begin{tabular}{ c c c c c } \hline Participation Pa$	On-State Drain Current ^a	I _{D(on)}	$V_{GS} = 10 V$	$V_{DS} \ge 5 V$	50	-	-	А	
$ \begin{array}{ c c c c c c } \hline Drain-Source On-State Resistance a \\ \hline Poston M $			$V_{GS} = 10 V$	I _D = 30 A	-	0.0020	0.0035	Ω	
$ \begin{array}{ c c c c c } \hline V_{GS} = 10 \ V & I_D = 30 \ A, \ T_J = 175 \ ^{\circ}C & - & - & 0.0058 \\ \hline V_{GS} = 4.5 \ V & I_D = 20 \ A & - & 0.0030 & 0.0045 \\ \hline V_{GS} = 4.5 \ V & I_D = 30 \ A & - & 186 & - & 55 \\ \hline Dynamic b & & & & & & & & & & & & & & & & & & $	Drain Source On State Desistence a	P	V _{GS} = 10 V	I _D = 30 A, T _J = 125 °C	-	-	0.0050		
$ \begin{array}{ c c c c c c c } \hline Forward Transconductance ^{b} & g_{fs} & V_{DS} = 15 \ V, \ I_{D} = 30 \ A & - & 186 & - & 58 \\ \hline \mbox{Dynamic b} & & & & & & & & & & & & & & & & & & $	Drain-Source On-State Resistance "	R _{DS(on)}	V _{GS} = 10 V	I _D = 30 A, T _J = 175 °C	-	-	0.0058		
$ \begin{array}{ c c c c c c c c c c } \hline \textbf{Dynamic b} & & & & & & & & & & & & & & & & & & $			$V_{GS} = 4.5 V$	I _D = 20 A	-	0.0030	0.0045		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Forward Transconductance b	9 _{fs}	V _{DS} = 15 V, I _D = 30 A		-	186	-	S	
$ \begin{array}{ c c c c c c c } \hline Output Capacitance & C_{OSS} & V_{GS} = 0 \ V & V_{DS} = 10 \ V, \ f = 1 \ MHz & \hline & 1350 & 1700 \\ \hline & 1350 & 1700 \\ \hline & - & 585 & 800 \\ \hline & - & 21 & - & \\ \hline & - & 11 & - & \\ \hline & - & 11 & - & \\ \hline & - & 11 & - & \\ \hline & - & 11 & - & \\ \hline & - & 11 & - & \\ \hline & - & 11 & - & \\ \hline & - & 11 & - & \\ \hline & - & 11 & - & \\ \hline & - & 11 & - & \\ \hline & - & 11 & - & \\ \hline & - & 11 & - & \\ \hline & - & 11 & - & \\ \hline & - & 11 & - & \\ \hline & - & 11 & - & \\ \hline & - & 11 & - & \\ \hline & - & 11 & - & \\ \hline & - & 11 & - & \\ \hline & - & 11 & - & \\ \hline & - & 15 & 25 & \\ \hline & - & - & 220 & A \\ \hline & - & - & 220 & A \\ \hline & - & - & - & 220 & A \\ \hline & - & - & - & 220 & A \\ \hline & - & - & - & - & 220 & A \\ \hline & - & - & - & - & 220 & A \\ \hline & - & - & - & - & - & - & \\ \hline & - & - & - & - & - & - & - & \\ \hline & - & - & - & - & - & - & - & \\ \hline & - & - & - & - & - & - & - & - & \\ \hline & - & - & - & - & - & - & - & - & \\ \hline & - & - & - & - & - & - & - & - & - &$	Dynamic b					•			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input Capacitance	C _{iss}			-	4300	5500	pF	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Output Capacitance	C _{oss}	$V_{GS} = 0 V$	$V_{DS} = 10 V$, f = 1 MHz	-	1350	1700		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Reverse Transfer Capacitance	C _{rss}			-	585	800		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Total Gate Charge ^c	Qg			-	70	110		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Charge ^c	Q _{gs}	$V_{GS} = 10 V$	$V_{DS} = 10 \text{ V}, I_{D} = 50 \text{ A}$	-	21	-	nC	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Drain Charge ^c	Q _{gd}			-	11	-		
Rise Time ° t_r $V_{DD} = 10 \text{ V}, \text{ R}_L = 0.2 \Omega$ $ 5$ 10 Turn-Off Delay Time ° $t_{d(off)}$ $I_D \cong 50 \text{ A}, \text{ V}_{GEN} = 10 \text{ V}, \text{ R}_g = 1 \Omega$ $ 38$ 60 $ 15$ 25 Source-Drain Diode Ratings and Characteristics ^b Pulsed Current ^a I_{SM} $ 220$ A	Gate Resistance	R _g	f = 1 MHz		1.1	2.3	3.5	Ω	
Turn-Off Delay Time ° $t_{d(off)}$ $l_D \cong 50 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$ -3860nFall Time ° t_f $l_D \cong 50 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$ -1525Source-Drain Diode Ratings and Characteristics bPulsed Current ^a I_{SM} 220A	Turn-On Delay Time ^c	t _{d(on)}			-	15	25		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Rise Time ^c	t _r			-	5	10	- ns	
Fall Time ° tr - 15 25 Source-Drain Diode Ratings and Characteristics ^b Pulsed Current ^a I _{SM} - - 220 A	Turn-Off Delay Time ^c	t _{d(off)}			-	38	60		
Pulsed Current ^a I _{SM} 220 A	Fall Time ^c				-	15	25		
	Source-Drain Diode Ratings and Char	acteristics ^b	·						
Forward Voltage V_{SD} $I_F = 50 \text{ A}, V_{GS} = 0 \text{ V}$ - 0.86 1.5 V	Pulsed Current ^a	I _{SM}				-	220	Α	
	Forward Voltage	V _{SD}	I _F =	50 A, V _{GS} = 0 V	-	0.86	1.5	V	

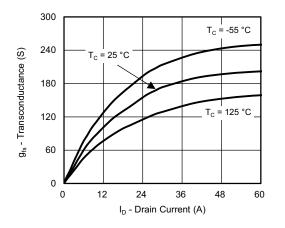
Notes

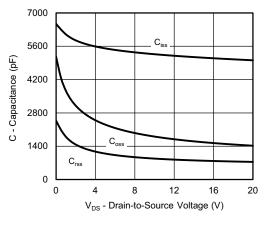
a. Pulse test; pulse width $\leq 300~\mu\text{s},~\text{duty}~\text{cycle} \leq 2~\%.$

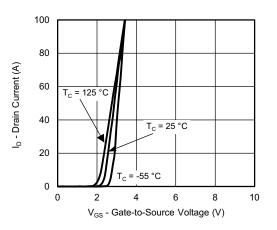
b. Guaranteed by design, not subject to production testing.

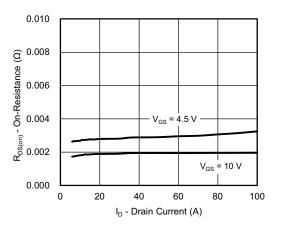

c. Independent of operating temperature.

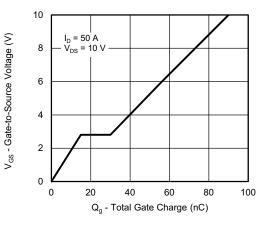
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


2


TYPICAL CHARACTERISTICS ($T_A = 25 \text{ °C}$, unless otherwise noted)


Output Characteristics


Transconductance


Capacitance

Transfer Characteristics

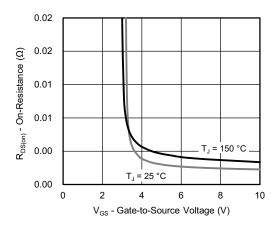
On-Resistance vs. Drain Current

Gate Charge

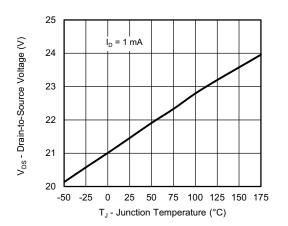
3

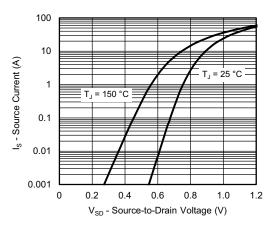
Document Number: 76456

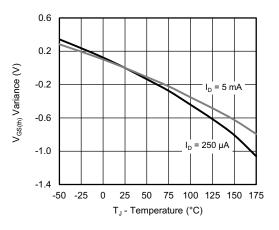
For technical questions, contact: <u>automostechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

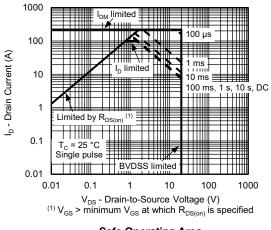

SQM100N02-3m5L

Vishay Siliconix


TYPICAL CHARACTERISTICS ($T_A = 25 \text{ °C}$, unless otherwise noted)


On-Resistance vs. Junction Temperature

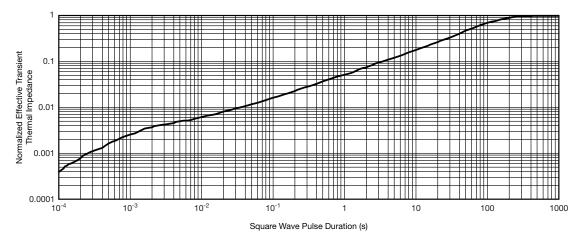

On-Resistance vs. Gate-to-Source Voltage


Drain Source Breakdown vs. Junction Temperature

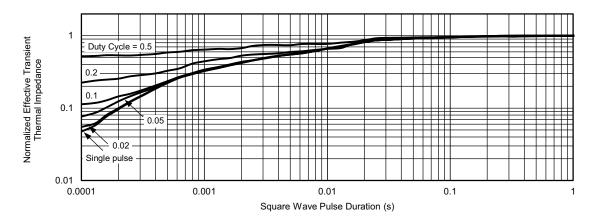
Source Drain Diode Forward Voltage

Threshold Voltage

Safe Operating Area


S16-1690-Rev. A, 29-Aug-16

4


For technical questions, contact: <u>automostechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

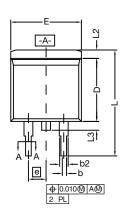
THERMAL RATINGS (T_A = 25 °C, unless otherwise noted)

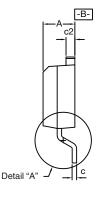
Normalized Thermal Transient Impedance, Junction-to-Ambient

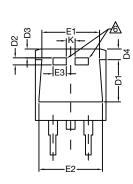
Normalized Thermal Transient Impedance, Junction-to-Case

Note

- The characteristics shown in the two graphs
 - Normalized Transient Thermal Impedance Junction-to-Ambient (25 °C)
 - Normalized Transient Thermal Impedance Junction-to-Case (25 °C)

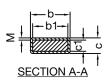

are given for general guidelines only to enable the user to get a "ball park" indication of part capabilities. The data are extracted from single pulse transient thermal impedance characteristics which are developed from empirical measurements. The latter is valid for the part mounted on printed circuit board - FR4, size 1" x 1" x 0.062", double sided with 2 oz. copper, 100 % on both sides. The part capabilities can widely vary depending on actual application parameters and operating conditions.


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?76456.



TO-263 (D²PAK): 3-LEAD

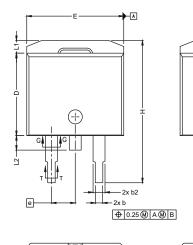
VERSION 1: FACILITY CODE = T

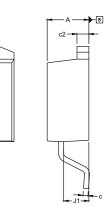


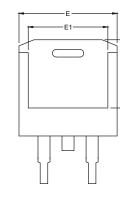
DETAIL A (ROTATED 90°)

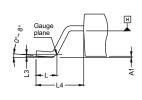
		INCHES		MILLIN	IETERS	
DIM.		MIN.	MAX.	MIN.	MAX.	
А		0.160	0.190	4.064	4.826	
	b	0.020	0.039	0.508	0.990	
	b1	0.020	0.035	0.508	0.889	
	b2	0.045	0.055	1.143	1.397	
с*	Thin lead	0.013	0.018	0.330	0.457	
C	Thick lead	0.023	0.028	0.584	0.711	
c1	Thin lead	0.013	0.017	0.330	0.431	
CI	Thick lead	0.023	0.027	0.584	0.685	
	c2	0.045	0.055	1.143	1.397	
	D	0.340	0.380	8.636	9.652	
	D1	0.220	0.240	5.588	6.096	
	D2	0.038	0.042	0.965	1.067	
D3		0.045	0.055	1.143	1.397	
	D4	0.044	0.052	1.118	1.321	
	E	0.380	0.410	9.652	10.414	
	E1	0.245	-	6.223	-	
	E2	0.355	0.375	9.017	9.525	
	E3	0.072	0.078	1.829	1.981	
е		0.100 BSC		2.54 BSC		
К		К 0.045		1.143	1.397	
L		L 0.575		14.605	15.875	
L1		0.090	0.110	2.286	2.794	
L2		0.040	0.055	1.016	1.397	
L3		L3 0.050		1.270	1.778	
L4		0.010 BSC		0.254 BSC		
	М	-	0.002	-	0.050	

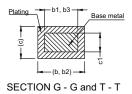
Notes


- 1. Plane B includes maximum features of heat sink tab and plastic.
- 2. No more than 25 % of L1 can fall above seating plane by max. 8 mils.
- 3. Pin-to-pin coplanarity max. 4 mils.
- 4. *: Thin lead is for SUB, SYB.
- Thick lead is for SUM, SYM, SQM.
- 5. Use inches as the primary measurement.


This feature is for thick lead.

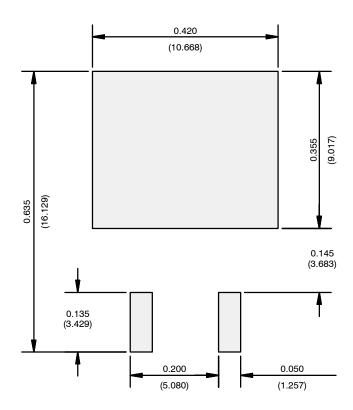

Revison: 28-Oct-2024




VERSION 2: FACILITY CODE = N

OPTION 1 2 leads

2


 \oplus

3 leads

DIM.	MIN.	MAX.		
A	4.36	4.56		
A1	0	0.25		
b	0.70	0.90		
b1	0.51	0.89		
b2	1.20	1.46		
b3	1.17	1.37		
с	0.38	0.694		
c1	0.38	0.534		
c2	1.19	1.34		
D	8.60	9.00		
D1	6.9	7.5		
E	10.15	10.55		
E1	8.1	8.7		
e	2.5	4 BSC		
Н	15.0	15.6		
L	1.9	2.5		
L1	-	1.65		
L2	-	1.78		
L3	0.25 typ.			
L4	4.78 5.28			
J1	2.56 2.96			
ECN: S24-1080-Rev. L, 28-Oct-2024 DWG: 5843				

RECOMMENDED MINIMUM PADS FOR D²PAK: 3-Lead

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2025 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2025

1