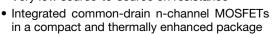


Top View

## Common Drain Dual N-Channel 30 V (S1-S2) MOSFET

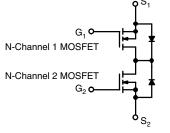

# 

| PRODUCT SUMMARY                                              |              |  |  |  |  |
|--------------------------------------------------------------|--------------|--|--|--|--|
| V <sub>S1S2</sub> (V)                                        | 30           |  |  |  |  |
| $R_{S1S2(on)}$ max. ( $\Omega$ ) at $V_{GS} = 10 \text{ V}$  | 0.0040       |  |  |  |  |
| $R_{S1S2(on)}$ max. ( $\Omega$ ) at $V_{GS} = 4.5 \text{ V}$ | 0.0060       |  |  |  |  |
| Q <sub>g</sub> typ. (nC) <sup>g</sup>                        | 19           |  |  |  |  |
| I <sub>S1S2</sub> (A) <sup>a</sup>                           | 108          |  |  |  |  |
| Configuration                                                | Common drain |  |  |  |  |

**Bottom View** 

#### **FEATURES**

- TrenchFET® Gen IV power MOSFET
- Very low source-to-source on resistance






- 100 % R<sub>g</sub> and UIS tested
- · Optimizes circuit layout for bi-directional current flow
- Material categorization: for definitions of compliance please see <a href="https://www.vishay.com/doc?99912">www.vishay.com/doc?99912</a>

#### **APPLICATIONS**

- · Battery protection switch
- Bi-directional switch
- · Load switch



| ORDERING INFORMATION            |                    |
|---------------------------------|--------------------|
| Package                         | PowerPAK 1212-8SCD |
| Lead (Pb)-free and halogen-free | SiSF04DN-T1-GE3    |

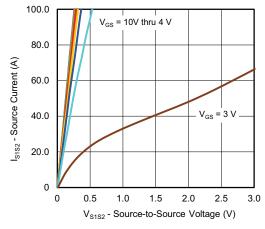
| PARAMETER                                          |                        | SYMBOL                            | LIMIT               | UNIT |  |
|----------------------------------------------------|------------------------|-----------------------------------|---------------------|------|--|
| Drain-source voltage                               |                        | V <sub>S1S2</sub>                 | 30                  | V    |  |
| Gate-source voltage                                |                        | V <sub>GS</sub>                   | +16 / -12           | V    |  |
| Continuous drain current (T <sub>J</sub> = 150 °C) | T <sub>C</sub> = 25 °C |                                   | 108                 |      |  |
|                                                    | T <sub>C</sub> = 70 °C | 1. —                              | 86                  |      |  |
|                                                    | T <sub>A</sub> = 25 °C | I <sub>S1S2</sub>                 | 30 b, c             | Α    |  |
|                                                    | T <sub>A</sub> = 70 °C | 1                                 | 24 <sup>b, c</sup>  |      |  |
| Pulsed drain current (t = 100 μs)                  |                        | I <sub>S1S2M</sub>                | 190                 |      |  |
|                                                    | T <sub>C</sub> = 25 °C |                                   | 69.4                |      |  |
| Maximum power dissipation                          | T <sub>C</sub> = 70 °C |                                   | 44.4                | 14/  |  |
|                                                    | T <sub>A</sub> = 25 °C | P <sub>D</sub>                    | 5.2 <sup>b, c</sup> | W    |  |
|                                                    | T <sub>A</sub> = 70 °C | 1                                 | 3.3 b, c            |      |  |
| Operating junction and storage temperature range   |                        | T <sub>J</sub> , T <sub>stg</sub> | -55 to +150         | °C   |  |
| Soldering recommendations (peak temperature) c     |                        |                                   | 260                 |      |  |

| THERMAL RESISTANCE RATI          | NGS          |                   |         |         |      |
|----------------------------------|--------------|-------------------|---------|---------|------|
| PARAMETER                        |              | SYMBOL            | TYPICAL | MAXIMUM | UNIT |
| Maximum junction-to-ambient b    | t ≤ 10 s     | R <sub>thJA</sub> | 19      | 24      | °C/W |
| Maximum junction-to-case (drain) | Steady state | R <sub>thJC</sub> | 1.4     | 1.8     | C/VV |

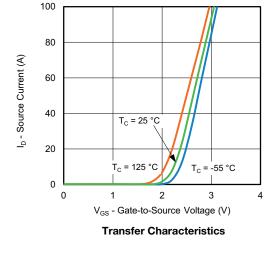
#### **Notes**

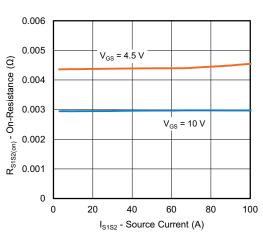
- a.  $T_C = 25 \,^{\circ}C$
- b. Surface mounted on 1" x 1" FR4 board
- c. t = 10 s
- d. See solder profile (<u>www.vishay.com/doc?73257</u>). The PowerPAK 1212-8SCD is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection
- e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components
- f. Maximum under steady state conditions is 63 °C/W
- g. Single MOSFET

# Vishay Siliconix

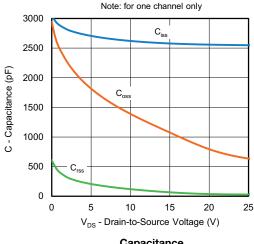

| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SYMBOL                | TEST CONDITIONS                                                                                               | MIN. | TYP.   | MAX.   | UNIT     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------|------|--------|--------|----------|
| Static                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                                                                                                               |      |        |        |          |
| Drain-source breakdown voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_{DS}$              | $V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$                                                                 | 30   | -      | -      | V        |
| Gate-source threshold voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V <sub>GS(th)</sub>   | $V_{S1S2} = V_{GS}, I_D = 250 \mu A$                                                                          | 1    | -      | 2.3    | ľ        |
| Gate-source leakage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I <sub>GSS</sub>      | $V_{S1S2} = 0 \text{ V}, V_{GS} = +16 \text{ V} / -12 \text{ V}$                                              | -    | -      | ± 100  | nA       |
| Zara mata walta na aluain awarant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I <sub>DSS</sub>      | V <sub>S1S2</sub> = 30 V, V <sub>GS</sub> = 0 V                                                               | -    | -      | 1      | μΑ       |
| Zero gate voltage drain current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | V <sub>S1S2</sub> = 30 V, V <sub>GS</sub> = 0 V, T <sub>J</sub> = 70 °C                                       | -    | -      | 15     |          |
| On-state drain current <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I <sub>S1S2(on)</sub> | $V_{S1S2} \ge 10 \text{ V}, V_{GS} = 10 \text{ V}$                                                            | 20   | -      | -      | Α        |
| Delice and a selection of the selection | _                     | V <sub>GS</sub> = 10 V, I <sub>S1S2</sub> = 7 A                                                               | -    | 0.0030 | 0.0040 |          |
| Drain-source on-state resistance <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R <sub>S1S2(on)</sub> | V <sub>GS</sub> = 4.5 V, I <sub>S1S2</sub> = 5 A                                                              | -    | 0.0043 | 0.0060 | Ω        |
| Forward transconductance a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9 <sub>fs</sub>       | V <sub>S1S2</sub> = 10 V, I <sub>S1S2</sub> = 35 A                                                            | -    | 115    | -      | S        |
| Dynamic <sup>b, c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                                                                                                               |      |        | •      | ·        |
| Input capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C <sub>iss</sub>      |                                                                                                               | -    | 2600   | -      |          |
| Output capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Coss                  | $V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$                                              | -    | 1100   | -      | рF       |
| Reverse transfer capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C <sub>rss</sub>      |                                                                                                               | -    | 65     | -      | '        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | V <sub>DS</sub> = 15 V, V <sub>GS</sub> = 10 V, I <sub>D</sub> =5 A                                           | -    | 40     | 60     |          |
| Total gate charge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $Q_g$                 |                                                                                                               | -    | 19     | 29     |          |
| Gate-source charge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $Q_{qs}$              | $V_{DS} = 10 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 5 \text{ A}$                                            | -    | 7.2    | -      | nC       |
| Gate-drain charge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $Q_{qd}$              |                                                                                                               | -    | 4.7    | -      |          |
| Gate resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $R_g$                 | f = 1 MHz                                                                                                     | 0.2  | 1.1    | 2.2    | Ω        |
| Turn-on delay time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t <sub>d(on)</sub>    |                                                                                                               | -    | 12     | 25     |          |
| Rise time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t <sub>r</sub>        | $V_{DD} = 15 \text{ V. R}_1 = 3 \Omega. \text{ less} \approx 5 \text{ A}.$                                    | -    | 21     | 40     |          |
| Turn-off delay time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t <sub>d(off)</sub>   | $V_{DD} = 15 \text{ V}, R_L = 3 \Omega, I_{S1S2} \cong 5 \text{ A},$ $V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$ |      | 30     | 60     |          |
| Fall time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t <sub>f</sub>        |                                                                                                               | -    | 6      | 15     |          |
| Turn-on delay time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t <sub>d(on)</sub>    |                                                                                                               | -    | 25     | 50     | ns       |
| Rise time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t <sub>r</sub>        | $V_{DD} = 15 \text{ V}, R_{I} = 3 \Omega, I_{D} \cong 5 \text{ A},$                                           | -    | 50     | 100    |          |
| Turn-off delay time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t <sub>d(off)</sub>   | $V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$                                                                     | -    | 32     | 60     |          |
| Fall time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t <sub>f</sub>        |                                                                                                               | -    | 17     | 35     | 1        |
| <b>Drain-Source Body Diode Characteristi</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cs <sup>c</sup>       |                                                                                                               | 1    |        | •      | <u> </u> |
| Continuous source-drain diode current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I <sub>S1S2</sub>     | T <sub>C</sub> = 25 °C                                                                                        | -    | -      | 60     |          |
| Pulse diode forward current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I <sub>S1S2M</sub>    | -                                                                                                             | -    | -      | 190    | A        |
| Body diode reverse recovery time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t <sub>rr</sub>       |                                                                                                               | -    | 37     | 75     | ns       |
| Body diode reverse recovery charge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Q <sub>rr</sub>       | $I_F = 5 \text{ A, di/dt} = 100 \text{ A/µs,}$                                                                | _    | 28     | 60     | nC       |
| Reverse recovery fall time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t <sub>a</sub>        | $T_J = 25 ^{\circ}\text{C}$                                                                                   | -    | 20     | -      |          |
| Reverse recovery rise time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t <sub>b</sub>        |                                                                                                               | _    | 17     | _      | ns       |

#### **Notes**

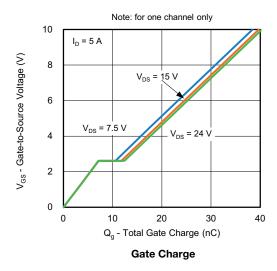

- a. Pulse test; pulse width  $\leq 300~\mu\text{s},$  duty cycle  $\leq 2~\%$
- b. Guaranteed by design, not subject to production testing
- c. On single MOSFET

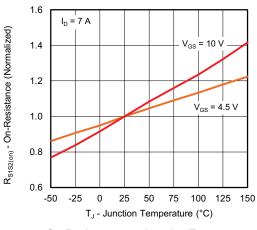

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.





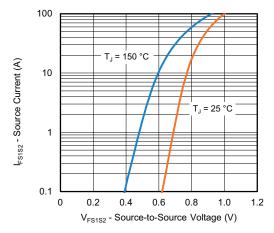

**Output Characteristics** 



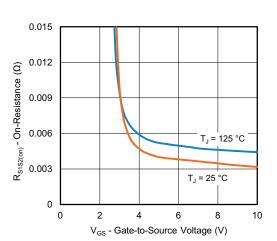




On-Resistance vs. Source Current and Gate Voltage

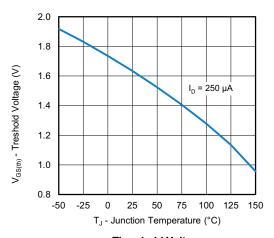



Capacitance

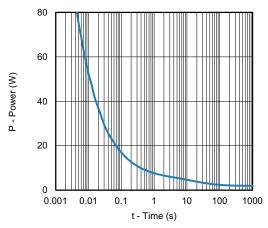





On-Resistance vs. Junction Temperature

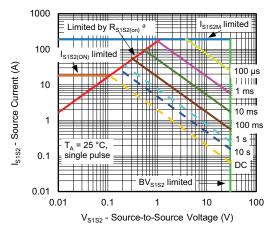




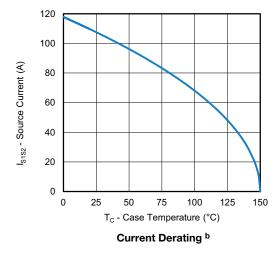


Source-Drain Diode Forward Voltage

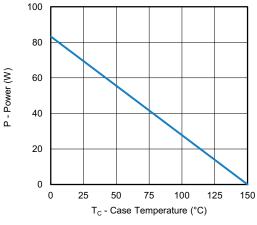


On-Resistance vs. Gate-to-Source Voltage




Threshold Voltage



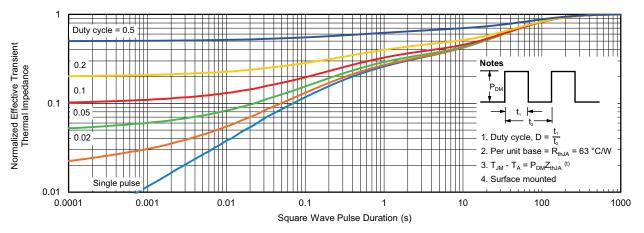


Single Pulse Power, Junction-to-Ambient



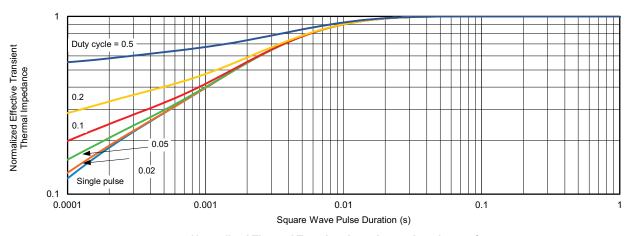


Safe Operating Area, Junction-to-Ambient






Power, Junction-to-Case


#### Notes

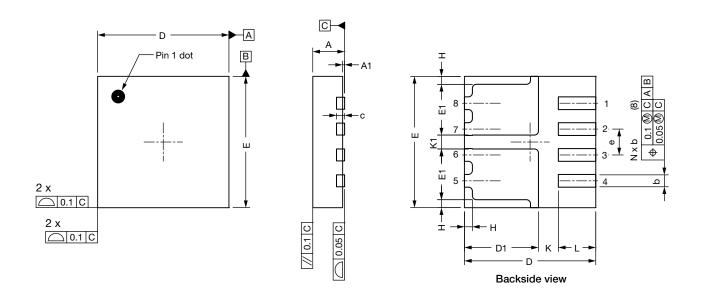
- a.  $V_{GS}$  > minimum  $V_{GS}$  at which  $R_{DS(on)}$  is specified
- b. The power dissipation P<sub>D</sub> is based on T<sub>J</sub> max. = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit





Normalized Thermal Transient Impedance, Junction-to-Ambient



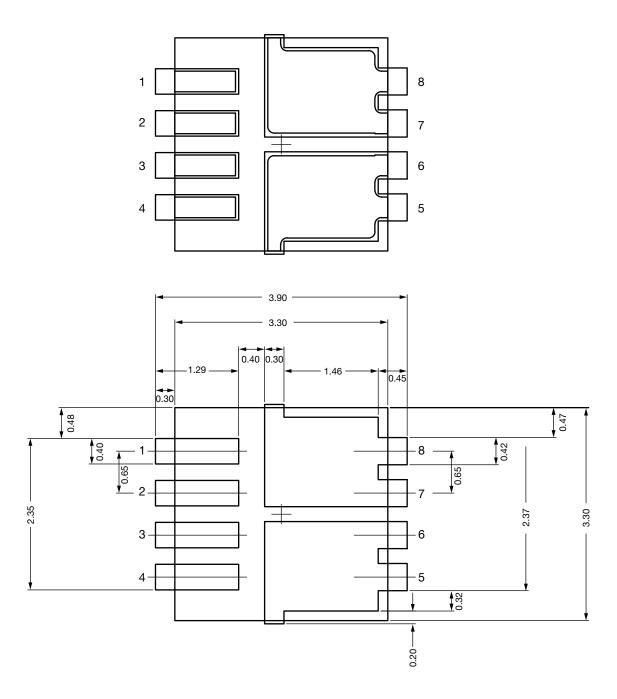

Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see <a href="https://www.vishay.com/ppg?77230">www.vishay.com/ppg?77230</a>.



Vishay Siliconix

# PowerPAK® 1212-8S CD with Flip Chip




| DIM. | MILLIMETERS |           |      | INCHES |            |       |  |
|------|-------------|-----------|------|--------|------------|-------|--|
|      | MIN.        | NOM.      | MAX. | MIN.   | NOM.       | MAX.  |  |
| Α    | 0.70        | 0.75      | 0.80 | 0.027  | 0.029      | 0.031 |  |
| A1   | 0           | 0.02      | 0.05 | 0      | 0.001      | 0.002 |  |
| b    | 0.27        | 0.32      | 0.37 | 0.011  | 0.013      | 0.015 |  |
| С    | -           | 0.20 ref. | -    | -      | 0.008 ref. | -     |  |
| D    | 3.20        | 3.30      | 3.40 | 0.126  | 0.130      | 0.134 |  |
| D1   | 1.76        | 1.86      | 1.96 | 0.069  | 0.073      | 0.077 |  |
| E    | 3.20        | 3.30      | 3.40 | 0.126  | 0.130      | 0.134 |  |
| E1   | 1.18        | 1.28      | 1.38 | 0.046  | 0.050      | 0.054 |  |
| е    | 0.60        | 0.65      | 0.70 | 0.024  | 0.026      | 0.028 |  |
| K    |             | 0.50 typ. |      |        | 0.020 typ. |       |  |
| K1   | 0.35 typ.   |           |      |        | 0.014 typ. |       |  |
| Н    | 0.10        | 0.20      | 0.30 | 0.006  | 0.008      | 0.010 |  |
| L    | 0.84        | 0.94      | 1.04 | 0.033  | 0.037      | 0.041 |  |

DWG: 6061



# Recommended Land Pattern PowerPAK® 1212-8S CD





### **Legal Disclaimer Notice**

Vishay

#### **Disclaimer**

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.