

High-Bandwidth, Low Voltage, Dual SPDT Analog Switches

DESCRIPTION

The DG2519E is monolithic CMOS dual single-pole / double-throw (SPDT) analog switches. It is specifically designed for low-voltage, high bandwidth applications.

The DG2519E on-resistance, matching and flatness are guaranteed over the entire analog voltage range. Wide dynamic performance is achieved with typical at -61 dB for both cross-talk and off-isolation at 1 MHz.

Both SPDT's operate with independent control logic, conduct equally well in both directions and block signals up to the power supply level when off. Break-before-make is guaranteed.

With fast switching speeds, low on-resistance, high bandwidth, and low charge injection, the DG2519E are ideally suited for audio and video switching with high linearity.

Built on Vishay Siliconix's low voltage CMOS technology, the DG2519E contain an epitaxial layer which prevents latch-up

FEATURES

- Single supply (1.8 V to 5.5 V)
- Low on-resistance R_{ON} : 2.5 Ω

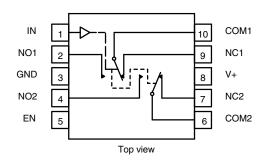
MSOP-10 and DFN-10 package

 Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

Pb-free

RoHS COMPLIANT

COMPLIANT HALOGEN FREE


BENEFITS

- Reduced power consumption
- High accuracy
- Reduce board space
- · Low-voltage logic compatible
- · High bandwidth

APPLICATIONS

- Cellular phones
- · Speaker headset switching
- · Audio and video signal routing
- PCMCIA cards
- · Low-voltage data acquisition
- ATE

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE						
LOGIC	EN	NC1 and NC2	NO1 and NO2			
0	1	ON	OFF			
1	1	OFF	ON			
0	0	OFF	OFF			
1	0	OFF	OFF			

ORDERING INFORMATION					
TEMP. RANGE	PACKAGE	PART NUMBER			
-40 °C to +85 °C	MSOP-10	DG2519EDQ-T1-GE3			
-40 C to +65 C	DFN-10	DG2519EDN-T1-GE4			

ABSOLUTE MAXIMUM RATINGS					
PARAMETER		LIMIT	UNIT		
Reference V+ to GND		-0.3 to +6	V		
IN, COM, NC, NO a		-0.3 to (V+ + 0.3)	V		
Continuous current (any terminal)		± 50	mA		
Peak current (pulsed at 1 ms, 10 % duty cycle)		± 200	IIIA		
Storage temperature (D suffix)		-65 to +150	°C		
Power dissipation (packages) ^b	MSOP-10 °	320	mW		
Fower dissipation (packages) *	DFN-10 ^d	1191	11100		
ESD / HBM	EIA / JESD22-A114-A	7.5k	V		
ESD / CDM	EIA / JESD22-C101-A	1.5k	V		
Latch up	JESD78	300	mA		

Notes

- a. Signals on NC, NO, COM, IN, or EN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings
- b. All leads welded or soldered to PC board
- c. Derate 4 mW/°C above 70 °C
- d. Derate 14.9 mW/°C above 70 °C

Vishay Siliconix

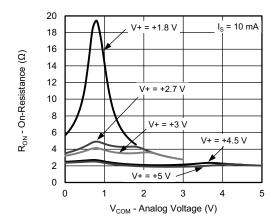
Analog Switch Analog signal range d Vanalog Vanalog Vanalog signal range d Vanalog	X. c	NIT	
Analog Switch V+ = 3V, ± 10 %, V _{IN/ENL} = 0.4 V, V _{IN/ENH} = 1.5 V° MIN. ° TYP. ° MIN. ° TYP. ° <t< th=""><th>/+ V</th><th></th></t<>	/+ V		
Analog signal range d Vanalog Vanalog Vanalog Vanalog signal range d Vanalog signal range d Vanalog		CIVIT	
$ \text{Drain-source on-resistance } Passion \\ Pa$			
Drain-source on-resistance R _{DS(on)}	1	V	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
V+ = 2.7 V, V _{COM} = 0.8 V / 1.8 V, I _{COM} = 10 mA Full -	3		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.5		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.5	0	
On-resistance flatness d, f On-resistance flatness d, f On-resistance flatness d, f Off leakage current g Off leakage current g INC/NO(off) COM off leakage current g ICOM(off) V+ = 3.6 V, V _{NC/NO} = 1 V / 3.2 V, v _{COM} = 3.2 V / 1 V, v _{EN} = 0 V Room off leakage current g Room off leakage current g ICOM(off) Com off leakage current g ICOM(off) V+ = 3.3 V, V _{COM} = V _{NC/NO} = 1 V / 3.2 V Full off leakage current g Room off leakage current g ICOM(off) ICOM(off) ICOM(off) V+ = 3.3 V, V _{COM} = V _{NC/NO} = 1 V / 3.2 V Full off leakage current g ICOM(off) ICOM(off) ICOM(off) ICOM(off) V+ = 3.3 V, V _{COM} = V _{NC/NO} = 1 V / 3.2 V ICOM off leakage current g ICOM(off) ICOM(off) ICOM(off) ICOM(off) ICOM(off) V+ = 3.3 V, V _{COM} = V _{NC/NO} = 1 V / 3.2 V ICOM off leakage current g ICOM(off) ICOM(off	.3	Ω	
Non-resistance flatness d, f Rflat(on) Rflat(on) Recom - 0.62 - -	.6		
Name	.1		
V+ = 3.6 V, V _{NC/NO} = 1 V / 3.2 V, V _{COM} = 3.2 V / 1 V, V _{EN} = 0 V Full -5 -	.5		
V+ = 3.6 V, V _{NC/NO} = 1 V / 3.2 V, Full -5 -5	1		
COM off leakage current 9	5		
Channel-on leakage current 9	1 ,		
Composition of the large Composition of the	n <i>i</i>	nA	
Digital Control Input current d Input high voltage d Vinh Full -5 - Input low voltage d Vinh Full -1 - - Input low voltage d Vinh Full 1.5 - Input low voltage d Vinh Full - - 0 Digital input capacitance d Cin Room - 3 -	1	1	
Input current ^d I _{INL} or I _{INH} Full -1 - Input high voltage ^d V _{INH} Full 1.5 - Input low voltage ^d V _{INL} Full - - 0 Digital input capacitance ^d C _{IN} Room - 3 -	5		
Input current ^d I _{INL} or I _{INH} Full -1 - Input high voltage ^d V _{INH} Full 1.5 - Input low voltage ^d V _{INL} Full - - 0 Digital input capacitance ^d C _{IN} Room - 3 -			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 µ/	μΑ	
Input low voltage ^d V _{INL} Full (0) Digital input capacitance ^d C _{IN} Room - 3	-		
Digital input capacitance ^d C _{IN} Room - 3	.4 V	V	
	- pf	pF	
Dynamic Characteristics			
Room - 21	5	ns	
Turn-on time t _{ON} Full	50		
Room - 11 :	35		
Turn-off time t_{OFF} $V_{NC/NO} = 3 \text{ V}, C_L = 35 \text{ pf}, R_L = 300 \Omega$	ns I5		
Room 3 13	_		
Break-before-make time d t _{BBM} Full 2 -	_		
Charge injection d Q_{INJ} $C_L = 1 \text{ nF}, V_{gen} = 1.5 \text{ V}, R_{gen} = 0 \Omega$ Room10.2	- p(рС	
Bandwidth d BW $C_{L} = 5 \text{ pF}$ (set up capacitance) Room - 222		ИHz	
f = 1 MHz Boom - -58	-		
Off-isolation d OIRR $R_L = 50 \Omega$, $C_L = 5 pF$ $f = 10 MHz Room47$	_	dB	
f – 1 MHz Room57	dE		
Channel-to-channel crosstalk d X_{TALK} $R_L = 50 \Omega$, $C_L = 5 pF$ $f = 10 MHz$ R_{OOM} -47	_		
Chroses Boom - 7	_		
NO, NC Off capacitance d CNC(off)	_		
V+ = 2.7 V, f = 1 MHz	pF	pF	
Channel-on capacitance d CNC(on) Room - 24	_		
Power Supply			
	.3 V	V	
		μA	

Notes

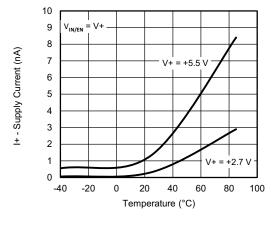
- a. Room = 25 °C, Full = as determined by the operating suffix
- b. Typical values are for design aid only, not guaranteed nor subject to production testing
- c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet
- d. Guarantee by design, not subjected to production test
- e. V_{IN} = V+ voltage to perform proper function
- f. Crosstalk measured between channels
- g. Guarantee by 5 V testing

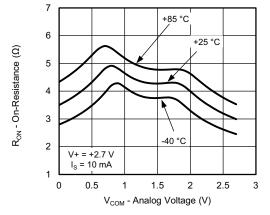
Vishay Siliconix

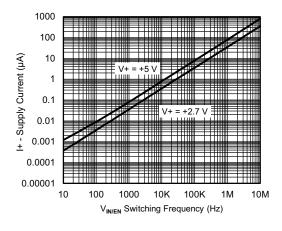
PARAMETER	SYMBOL	TEST CONDITIONS OTHERWISE UNLESS SPECIFIED $V+=5~V,\pm~10~\%, V_{IN/ENL}=0.5~V, V_{IN/ENH}=2\\V^{\rm e}$		TEMP.	LIMITS -40 °C to +85 °C			UNIT
	STWIDOL			а	MIN. c	TYP. b	MAX. c	ONT
Analog Switch								
Analog signal ranged	V_{ANALOG}				0	-	V+	V
Drain-source on-resistance	R-ac	$V+ = 4.5 \text{ V}, V_{COM} = 0.8 \text{ V} / 3.5 \text{ V}; I_{COM} = 10 \text{ mA}$		Room	-	2.5	3.1	
Dialii-source on-resistance	R _{DS(on)}			Full	-	-	4	
On-resistance matching	$\Delta R_{DS(on)}$	$V+ = 4.5 \text{ V}, V_{COM} = 0.8 \text{ V} / 2.5 \text{ V} / 3.5 \text{ V},$ $I_{COM} = 10 \text{ mA}$		Room	-	0.01	0.4	Ω
- Trodetario materning	21 (DS(011)			Full	ı	-	0.5	- 32
On-resistance flatness d, f	R _{flat(on)}			Room Full	-	0.61	1	
	· ·liat(on)				-	-	1.5	
Off leakage current ^g	I _{NC/NO(off)}			Room Full	-2	0.16	2	
	110/110(011)		$V+ = 5.5 \text{ V}, V_{NC/NO} = 1 \text{ V} / 4.5 \text{ V}, V_{COM} = 4.5 \text{ V} / 1 \text{ V}, V_{EN} = 0 \text{ V}$		-10	-	10	
COM off leakage current ^g	I _{COM(off)}	$V_{COM} = 4.5 \text{ V} / 1 \text{ V}, V_{EN} = 0 \text{ V}$			-2	0.20	2	nA
- Com on loakage carrons	·COM(OII)			Full	-10	-	10	
Channel-on leakage current ^g	I _{COM(on)}	(,		Room	-2	0.20	2	
	-COM(OH)			Full	-10	-	10	
	V+ = 0 V, V _{COM} = 5.5 V, NC/NO open		open	Full	-	0.01	5	μΑ
Power down leakage ^d	I _{PD}	$V+=0$ V, $V_{NC/NO}=5.5$ V, COM, open		Full	-	0.01	3	mA
Digital Control								
Input current ^d	I _{INL} or I _{INH}			Full	-1	-	1	μΑ
Input high voltage ^d	V_{INH}			Full	2	-	-	V
Input low voltage ^d	V_{INL}			Full	-	-	0.5	v
Digital input capacitance d	C _{IN}				-	3	-	pF
Dynamic Characteristics								
Turn-on time	t _{ON}			Room	-	14	40	
Turr or time	UN			Full	-	-	43	
Turn-off time	toff	$V_{NC/NO} = 3 \text{ V, } C_L = 35 \text{ pf, } R_L = 300 \Omega$		Room	-	7	33	ns
Turn on time	OFF	VNC/NO = 0 V, OL = 00 pi, NL = 0	00 22	Full	-	=	35	113
Break-before-make time d	t			Room	3	8	-	
	t _{BBM}			Full	2	-	-	
Propagation delay ^d	tpd	V+ = 5 V, no R _L		Room	-	325	-	ps
Charge injection ^d	Q_{INJ}	C_L = 1 nF, V_{gen} = 2.5 V, R_{gen} = 0 Ω		Room	-	-14	-	рС
Bandwidth ^d	BW	C _L = 5 pF (set up capacitance		Room	-	217	-	MHz
Off-isolation d	OIRR	$R_L = 50 \Omega, C_L = 5 pF$	= 1 MHz	Room	-	-61	-	
Channel-to-channel	X _{TALK}	f =	= 10 MHz	Room	-	-48	-	dB
		B. = 50 O C. = 5 pE	= 1 MHz	Room	-	-61	-	
crosstalk ^d	^IALK	f =	= 10 MHz	Room	-	-48	-	
NO, NC Off capacitance d	$C_{NO(off)}$			Room	-	7	-	
TTO, TTO OTT GAPAGITATIO	$C_{NC(off)}$	V+ = 5 V, f = 1 MHz		Room	-	7	-	pF
Channel-On capacitance d	C _{NO(on)}			Room	-	24	-	ρı
Chainer On Capacitance	C _{NC(on)}			Room	-	24	-	
Power Supply								
Power supply range	V+			4.5	-	5.5	V	
Power supply current d	l+	$V+ = 5.5 \text{ V}, V_{IN} = 0 \text{ V or } 5.5 \text{ V}$	V	Full	ı	-	1	μΑ

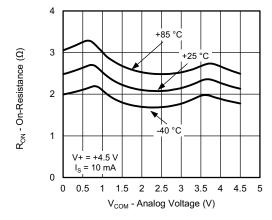

Notes

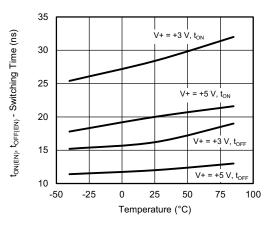
- a. Room = 25 °C, Full = as determined by the operating suffix
- b. Typical values are for design aid only, not guaranteed nor subject to production testing
- c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet
- d. Guarantee by design, not subjected to production test
- e. V_{IN} = input voltage to perform proper function
- f. Difference of min and max values
- g. Guaranteed by 5 V testing.


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

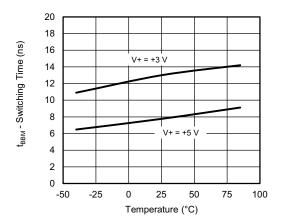

R_{ON} vs. V_{COM} and Single Supply Voltage


Supply Current vs. Temperature

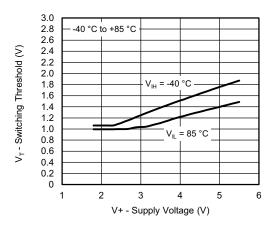

R_{ON} vs. Analog Voltage and Temperature

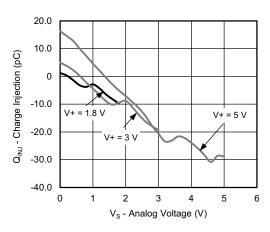
Positive Supply Current vs. Switching Frequency

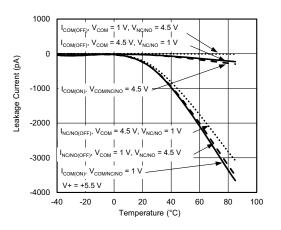
R_{ON} vs. Analog Voltage and Temperature

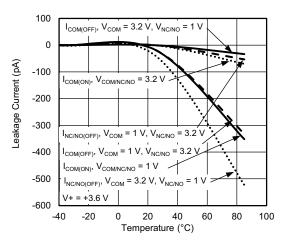


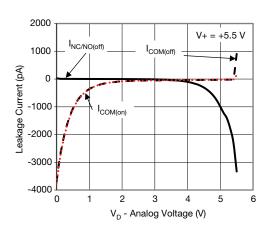
Switching Time vs. Temperature


For technical questions, contact: analogswitchte

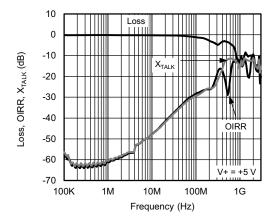

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

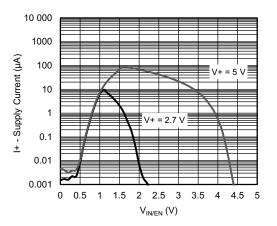

Switching Time vs. Temperature


Switching Threshold vs. Supply Voltage

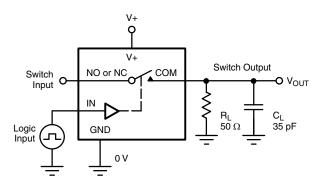

Charge Injection vs. Source Voltage

Leakage Current vs. Temperature

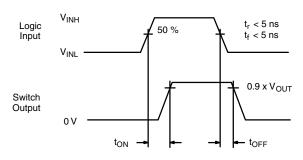

Leakage Current vs. Temperature


Leakage Current vs. Analog Voltage

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)



Loss, OIRR, X_{TALK} vs. Frequency


Positive Supply Current vs. Logic Voltage

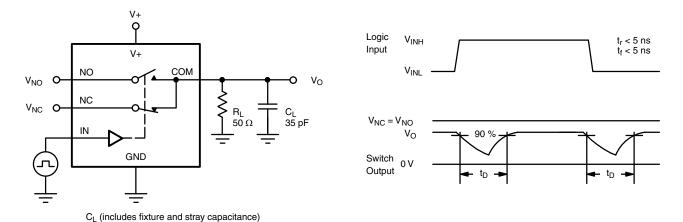
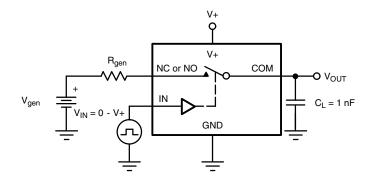
TEST CIRCUITS

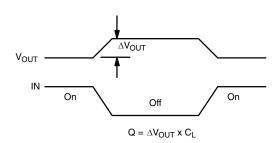
C_L (includes fixture and stray capacitance)

$$V_{OUT} = V_{COM} \left(\frac{R_L}{R_L + R_{ON}} \right)$$

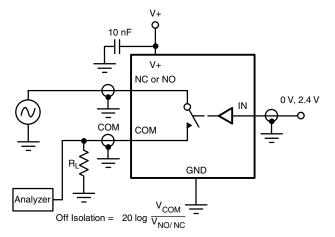
Logic "1" = Switch On Logic input waveforms inverted for switches that have the opposite logic sense.

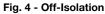
Fig. 1 - Switching Time


Fig. 2 - Break-Before-Make Interval

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000


TEST CIRCUITS



IN depends on switch configuration: input polarity determined by sense of switch.

Fig. 3 - Charge Injection

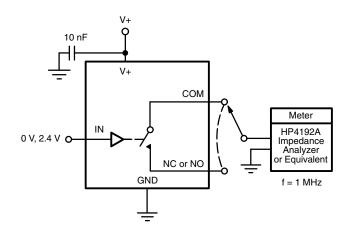


Fig. 5 - Channel Off/On Capacitance

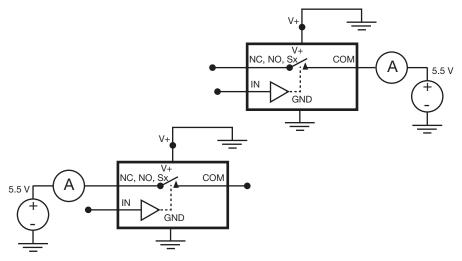
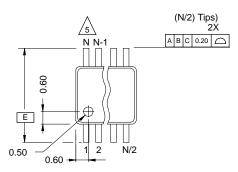
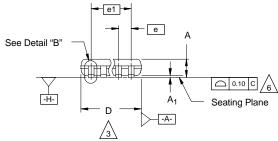
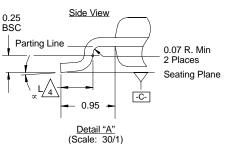


Fig. 6 - Source / Drain Power Down Leakage

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg278595.






MSOP: 10-LEADS

JEDEC Part Number: MO-187, (Variation AA and BA)

Top View

NOTES:

. Die thickness allowable is 0.203 ± 0.0127.

2. Dimensioning and tolerances per ANSI.Y14.5M-1994.

3.

Dimensions "D" and "E $_1$ " do not include mold flash or protrusions, and are measured at Datum plane $\boxed{-H_2}$, mold flash or protrusions shall not exceed 0.15 mm per side.

Dimension is the length of terminal for soldering to a substrate.

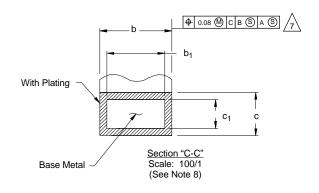
Terminal positions are shown for reference only.

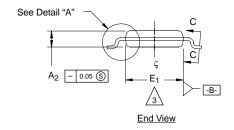
Formed leads shall be planar with respect to one another within 0.10 mm at seating plane.

The lead width dimension does not include Dambar protrusion. Allowable Dambar protrusion shall be 0.08 mm total in excess of the lead width dimension at maximum material condition. Dambar cannot be located on the lower radius or the lead foot. Minimum space between protrusions and an adjacent lead to be 0.14 mm. See detail "B" and Section "C-C".

Section "C-C" to be determined at 0.10 mm to 0.25 mm from the lead tip.

9. Controlling dimension: millimeters.

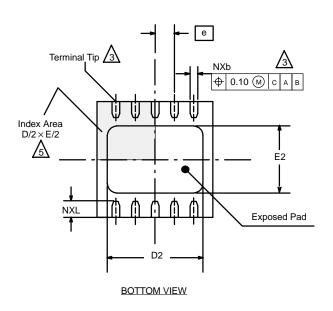

10. This part is compliant with JEDEC registration MO-187, variation AA and BA.

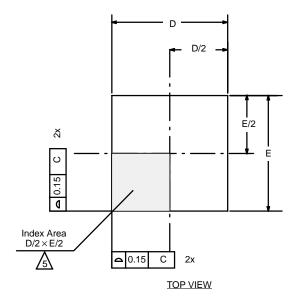


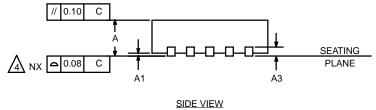
Datums —A— and —B— to be determined Datum plane —H—.

2 Exposed pad area in bottom side is the same as teh leadframe pad size.

N = 10L


	MI					
Dim	Min	Min Nom Max		Note		
Α	-	-	- 1.10			
A ₁	0.05	0.10	0.15			
A ₂	0.75	0.85	0.95			
b	0.17	0.17 - 0.27		8		
b ₁	0.17	0.20	0.23	8		
С	0.13	-	0.23			
c ₁	0.13	0.15	0.18			
D	3.00 BSC		3			
Е	4.90 BSC					
E ₁	2.90	2.90 3.00 3.10		3		
е	0.50 BSC					
e ₁	2.00 BSC					
L	0.40	0.55	0.70	4		
N	10			5		
œ	0°	4°	6°			
ECN: T-02080—Rev. C, 15-Jul-02 DWG: 5867						


Document Number: 71245


12-Jul-02

DFN-10 LEAD (3 X 3)

NOTES:

1. All dimensions are in millimeters and inches.

N is the total number of terminals.

Dimension b applies to metallized terminal and is measured between 0.15 and 0.30 mm from terminal tip. $\,$

Coplanarity applies to the exposed heat sink slug as well as the

The pin #1 identifier may be either a mold or marked feature, it must be located within the zone iindicated.

	МІ	LLIMETE	RS	INCHES		
Dim	Min	Nom	Max	Min	Nom	Max
Α	0.80	0.90	1.00	0.031	0.035	0.039
A 1	0.00	0.02	0.05	0.000	0.001	0.002
А3	0.20 BSC 0.008 BSC					
b	0.18	0.23	0.30	0.007	0.009	0.012
D	3.00 BSC			0.118 BSC		
D2	2.20	2.38	2.48	0.087	0.094	0.098
Е	3.00 BSC 0.118 BSC					
E2	1.49	1.64	1.74	0.059	0.065	0.069
е	0.50 BSC			0.020 BSC		
L	0.30	0.40	0.50	0.012	0.016	0.020
*Use millimeters as the primary measurement.						
ECN: S-42134—Rev. A, 29-Nov-04						

DWG: 5943

Document Number: 73181 www.vishay.com 29-Nov-04

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.