

2.5 Ω , High Bandwidth, Dual SPDT Analog Switch

DESCRIPTION

The DG2032E is a low-voltage dual single-pole / double-throw monolithic CMOS analog switch. Designed to operate from 1.8 V to 5.5 V power supply, the DG2032E achieves a bandwidth of 221 MHz while providing low on-resistance (2.5 Ω), excellent on-resistance matching (0.4 Ω) and flatness (1 Ω) over the entire signal range.

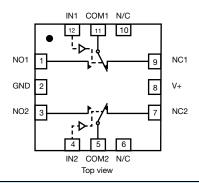
The DG2032E offers the advantage of high linearity that reduces signal distortion, making ideal for audio, video, and USB signal routing applications.

Built on Vishay Siliconix's proprietary sub-micron high-density process, the DG2032E brings low power consumption at the same time as reduces PCB spacing with the QFN12 package.

As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with the lead (Pb)-free device terminations. The QFN12 package has a nickel-palladium-gold device termination and is represented by the lead (Pb)-free "-GE4" suffix. The nickel-palladium-gold device terminations meet all JEDEC® standards for reflow and MSL ratings.

FEATURES

- 1.8 V to 5.5 V single supply operation
- Low R_{ON}: 2.5 Ω at 4.5 V
- 221 MHz, -3 dB bandwidth
- Low off-isolation, -63 dB at 1 MHz
- +1.6 V logic compatible
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912


BENEFITS

- · High linearity
- Low power consumption
- High bandwidth
- Full rail signal swing range

APPLICATIONS

- USB / UART signal switching
- · Audio / video switching
- Cellular phone
- Media players
- Modems
- Hard drives
- PCMCIA

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE					
LOGIC	NC1 AND NC2	NO1 AND NO2			
0	ON	OFF			
1	OFF	ON			

ORDERING INFORMATION						
TEMP. RANGE	PACKAGE	PART NUMBER				
-40 °C to +85 °C	12-Pin QFN (3 mm x 3 mm)	DG2032EDN-T1-GE4				

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	LIMIT	UNIT				
Reference to GND						
V+	-0.3 to +6	V				
IN, COM, NC, NO a	-0.3 to (V+ + 0.3)	7 v				
Continuous current (any terminal)	± 50	mA				
Peak current (pulsed at 1 ms, 10 % duty cycle	± 200] IIIA				
Storage temperature (D suffix)		-65 to +150	°C			
Power dissipation (packages) b	12-Pin QFN (3 mm x 3 mm) ^c	1295	mW			
ESD / HBM	7.5k	V				
ESD / CDM	EIA / JESD22-C101-A	1.5k	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
Latch up	JESD78	300	mA			

Notes

- a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings
- b. All leads welded or soldered to PC board
- c. Derate 4 mW/°C above 70 °C

www.vishay.com

Vishay Siliconix

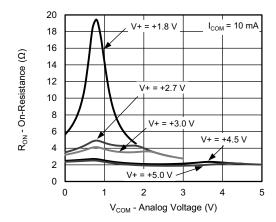
SPECIFICATIONS (V+	= 3 V)							
PARAMETER	SYMBOL	TEST CONDITIONS OTHERWISE UNLESS SPECIFIED		TEMP.	LIMITS -40 °C to +85 °C			UNIT
		$V+ = 3 V, \pm 10 \%, V_{INL} = 0.5 V, V_{INH}$	₁ = 1.5 V ^e	1	MIN. c	TYP. b	MAX. c	
Analog Switch								
Analog signal range d	V_{ANALOG}			Full	0	-	V+	V
		V+ = 1.8 V, V _{NC/NO} = 0.4 V / V+, I _{NC/NO} = 8 mA		Room	-	7	11	
Drain-source on-resistance	R _{DS(on)}			Full	-	-	13	
Drain Source on resistance	US(on)	V+ = 2.7 V, V _{COM} = 0.8 V / 1.8 V, I _{COM} = 10 mA		Room	-	4.6	5.5	
		V+ = 2.7 V, VCOM = 0.0 V / 1.0 V, ICOM	M = 10 IIIA	Full	-	-	6.5	Ω
On-resistance matching	$\Delta R_{DS(on)}$			Room	-	0.02	0.3	22
On-resistance matering	Δi iDS(on)	$V+ = 2.7 \text{ V}, V_{COM} = 0.8 \text{ V} / 1.4 \text{ V} /$	/ 1.8 V,	Full	-	-	0.6	
On-resistance flatness d, f	D	I _{COM} = 10 mA		Room	-	0.62	1	
On-resistance natness -,	R _{flat(on)}			Full	-	-	1.5	
Off lookage ourrent ($V+ = 3.6 \text{ V}, V_{NC/NO} = 1 \text{ V} / 3.2$	2 V,	Room	-1	0.01	1	
Off leakage current ^g	I _{NC/NO(off)}	$V_{COM} = 3.2 \text{ V} / 1 \text{ V}$		Full	-5	-	5	۰,۸
Channel-on leakage	1	V ₁ = 2.2 V V = V = 1 V	/20V	Room	-1	0.01	1	nA
current ^g	I _{COM(on)}	$V+ = 3.3 \text{ V}, V_{COM} = V_{NC/NO} = 1 \text{ V} / 3.2 \text{ V}$		Full	-5	-	5	
Digital Control								
Input current ^d	I _{INL} or I _{INH}			Full	-1	-	1	μΑ
Input high voltage ^d	V _{INH}			Full	1.5	-	-	W
Input low voltage d	V _{INL}			Full	-	-	0.4	V
Digital input capacitance d	C _{IN}			Room	-	3	-	pF
Dynamic Characteristics								
Turn on time				Room	-	19	45	
Turn-on time	t _{ON}			Full	-	-	50	
Turn off time	t _{OFF}			Room	-	9	35	
Turn-off time		$V_{NC/NO} = 3 \text{ V}, C_L = 35 \text{ pF}, R_L = 3$	300 12	Full	-	-	45	ns
Durally brafavor marks time of		1		Room	4	11	-	1
Break-before-make time ^d	t _{BBM}			Full	3	-	-	
Charge injection ^d	Q _{INJ}	C _L = 1 nF, V _{gen} = 1.5 V, R _{gen} =	: 0 Ω	Room	-	-9	-	рС
Bandwidth ^d	BW	C _L = 5 pF (set up capacitano	ce)	Room	-	226	-	MHz
Off indiction d	OIRR	D 5000 5 7 f	= 1 MHz	Room	-	-65	-	
Off-isolation d		$R_L = 50 \Omega, C_L = 5 pF$	= 10 MHz	Room	-	-39	-	40
Observation of a second of the	.,	D 5000 5.5	= 1 MHz	Room	-	-65	-	dB
Channel-to-channel crosstalk d	X_{TALK}	$R_L = 50 \Omega, C_L = 5 pF$	= 10 MHz	Room	-	-39	-	
NO NO effective d	C _{NO(off)}	V+ = 2.7 V, f = 1 MHz		Room	-	7	-	
NO, NC off capacitance ^d	C _{NC(off)}			Room	-	7	-	
Obanasi an assessitate d	C _{NO(on)}			Room	-	23	-	pF
Channel-on capacitance d	C _{NC(on)}			Room	-	23	-	
Power Supply								
Power supply range	V+				2.7	_	3.3	V
Power supply current d	l+	V+ = 2.7 V, V _{IN} = 0 V or 2.7	V	Full	-	-	1	μΑ
L. L.		V 1 = 2.7 V, V V = 0 V OI 2.7 V						

Notes

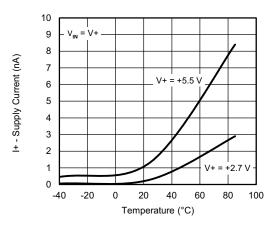
- a. Room = 25 °C, Full = as determined by the operating suffix
- b. Typical values are for design aid only, not guaranteed nor subject to production testing
- c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet
- d. Guarantee by design, not subjected to production test
- e. V_{IN} = input voltage to perform proper function
- f. Difference of min. and max. values
- g. Guaranteed by 5 V testing

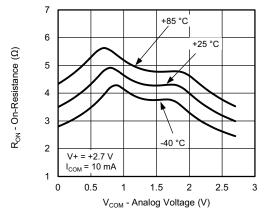
Vishay Siliconix

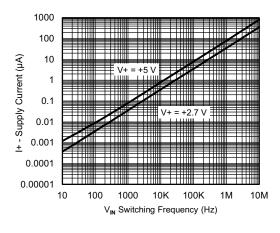
PARAMETER	SYMBOL	TEST CONDITIONS OTHERWISE UNLESS SPE	TEMP.	LIMITS -40 °C to +85 °C			UNIT		
		$V+ = 5 V, \pm 10 \%, V_{INL} = 0.5 V, V_{INL}$	/ _{INH} = 2 V ^e	u u	MIN. c	TYP. b	MAX. c		
Analog Switch									
Analog signal range d	V _{ANALOG}			Full	0	-	V+	V	
Drain-source on-resistance	В	V 4 E V V - 0 8 V / 2 E V: I	- 10 m A	Room	-	2.5	3.1		
Drain-source on-resistance	R _{DS(on)}	$V + = 4.5 \text{ V}, V_{COM} = 0.8 \text{ V} / 3.5 \text{ V}; I_{COM} = 10 \text{ mA}$		Full	-	-	4		
On-resistance matching	$\Delta R_{DS(on)}$	V+ = 4.5 V, V _{COM} = 0.8 V / 2.5 V / 3.5 V,		Room	-	0.01	0.4	Ω	
On-resistance matering	Al (DS(on)			Full	-	-	0.6	32	
On-resistance flatness d, f	Ba ./ .	$I_{COM} = 10 \text{ mA}$		Room	-	0.61	1		
On-resistance natness	R _{flat(on)}			Full	-	-	1.5		
Off leakage current ^g	hiomores	$V+ = 5.5 \text{ V}, V_{NC/NO} = 1 \text{ V} / 4$	4.5 V,	Room	-2	0.15	2		
On leakage current 5	I _{NC/NO(off)}	$V_{COM} = 4.5 \text{ V} / 1 \text{ V}$		Full	-10	-	10	nΔ	
Channel-on leakage current ^g	loove v	$V_{+} = 5.5 \text{ V}, V_{COM} = V_{NC/NO} = 1$	V / 4 5 V	Room	-2	0.20	2	nA	
Charinei-on leakage current	I _{COM(on)}	V+ = 3.5 V, VCOM = VNC/NO = 1	V / 4.5 V	Full	-10	-	10		
		$V+ = 0 V, V_{COM} = 5.5 V, NC/N$		Full	-	0.01	5	μΑ	
Power down leakage d	I _{PD}	V+ = 0 V, V _{NC/NO} = 5.5 V COM, open	Full	-	0.01	3	mA		
Digital Control									
Input current d	I _{INL} or I _{INH}			Full	-1	-	1	μA	
Input high voltage d	V_{INH}			Full	2	-	-	.,	
Input low voltage d	V _{INL}			Full	-	-	0.5	V	
Digital input capacitance d	C _{IN}			Room	-	3	-	рF	
Dynamic Characteristics									
Trum on time				Room	-	13	40		
Turn-on time	t _{ON}	$V_{NC/NO}$ = 3 V, C_L = 35 pF, R_L = 300 Ω		Full	-	-	43	ns	
Town off time o	t _{OFF}			Room	-	7	33		
Turn-off time				Full	-	-	35		
Book boton and allowed		1		Room	3	6	-	1	
Break-before-make time d	t _{BBM}			Full	2	-	-		
Propagation delay d	tpd	$V+=5 V$, no R_L		Room	-	380	-	ps	
Charge injection d	Q _{INJ}	$C_L = 1 \text{ nF}, V_{gen} = 2.5 \text{ V}, R_{ger}$	$\Omega = 0$	Room	-	-19.4	-	рС	
Bandwidth ^d	BW	C _L = 5 pF (set up capacita	ınce)	Room	-	221	-	MHz	
O# il-ti d	OIDD	D 5000 5 75	f = 1 MHz	Room	-	-63	-		
Off-isolation d	OIRR	$R_L = 50 \Omega$, $C_L = 5 pF$	f = 10 MHz	Room	-	-22	-	el D	
Channel-to-channel	V	D - 50 0 0 5 7 5	f = 1 MHz	Room	-	-65	-	dB	
crosstalk ^d	X _{TALK}	$R_L = 50 \Omega$, $C_L = 5 pF$	f = 10 MHz	Room	-	-40	-	1	
NO NO aff agency to a confidence of	C _{NO(off)}	V. 5V 6 1 MIL		Room	-	7	-		
NO, NC off capacitance d	C _{NC(off)}			Room	-	7	-]	
Observation assessment of	C _{NO(on)}	$V_{+} = 5 \text{ V}, f = 1 \text{ MHz}$		Room	-	23	-	pF	
Channel-on capacitance d	C _{NC(on)}	1		Room	-	23	-		
Power Supply									
Power supply range	V+				4.5	-	5.5	٧	
i ower supply range									

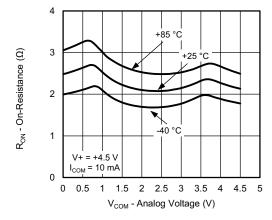

Notes

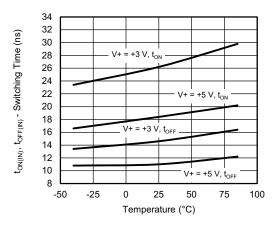
- a. Room = 25 $^{\circ}$ C, Full = as determined by the operating suffix
- b. Typical values are for design aid only, not guaranteed nor subject to production testing
- c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet
- d. Guarantee by design, not subjected to production test
- e. V_{IN} = input voltage to perform proper function
- f. Difference of min. and max. values
- g. Guaranteed by 5 V testing


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

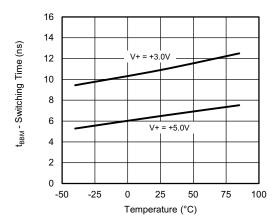

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

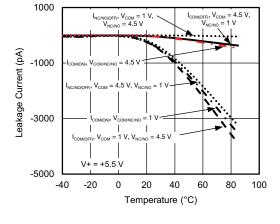

R_{ON} vs. V_{COM} and Single Supply Voltage

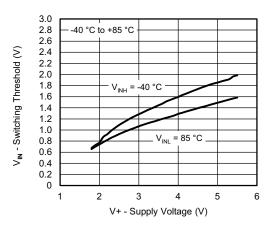

Supply Current vs. Temperature

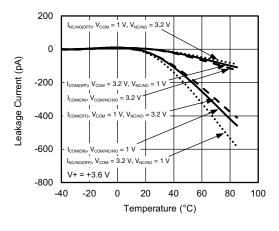

R_{ON} vs. Analog Voltage and Temperature

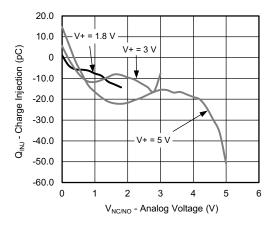
Positive Supply Current vs. Switching Frequency

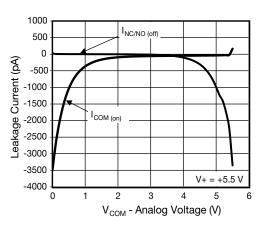

R_{ON} vs. Analog Voltage and Temperature


Switching Time vs. Temperature

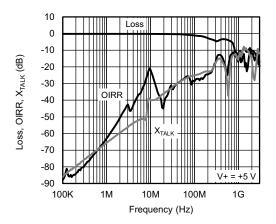

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)


Switching Time vs. Temperature

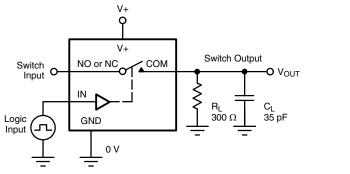

Leakage Current vs. Temperature


Switching Threshold vs. Supply Voltage

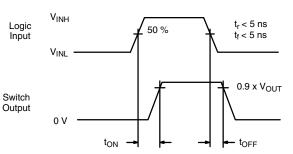
Leakage Current vs. Temperature


Charge Injection vs. Source Voltage

Leakage Current vs. Analog Voltage



TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)


Loss, OIRR, X_{TALK} vs. Frequency

TEST CIRCUITS

C_L (includes fixture and stray capacitance)

$$\boldsymbol{V}_{OUT} = \boldsymbol{V}_{COM} \left(\frac{\boldsymbol{R}_L}{\boldsymbol{R}_L + \boldsymbol{R}_{ON}} \right)$$

Logic "1" = Switch On Logic input waveforms inverted for switches that have the opposite logic sense.

Fig. 1 - Switching Time

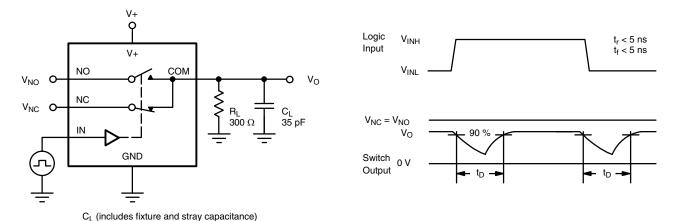
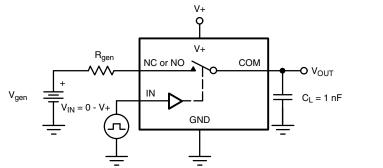
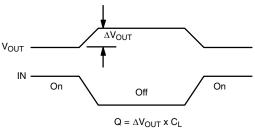
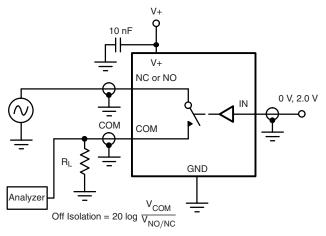




Fig. 2 - Break-Before-Make Interval


TEST CIRCUITS

IN depends on switch configuration: input polarity determined by sense of switch.

Fig. 3 - Charge Injection

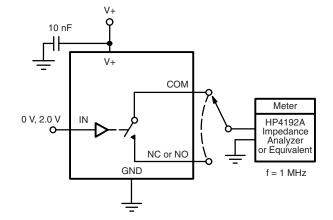


Fig. 4 - Off-Isolation

Fig. 5 - Channel Off / On Capacitance

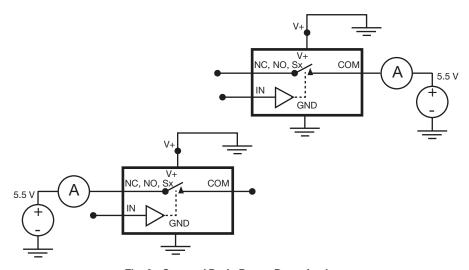
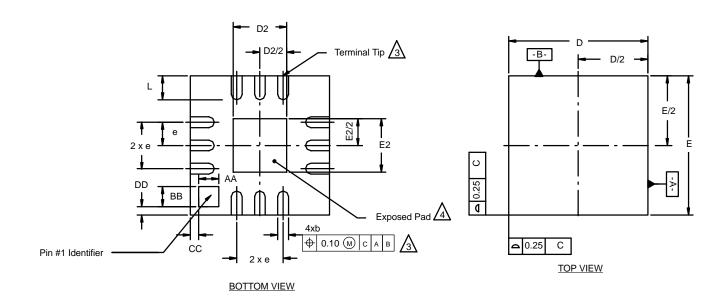
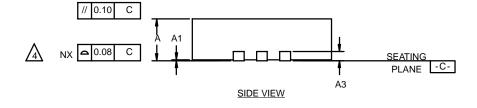


Fig. 6 - Source / Drain Power Down Leakage

www.vishay.com


Vishay Siliconix


PRODUCT SUMMARY	
Part number	DG2032E
Status code	2
Configuration	SPDT x 2
Single supply min. (V)	1.8
Single supply max. (V)	5.5
Dual supply min. (V)	-
Dual supply max. (V)	-
On-resistance (Ω)	2.5
Charge injection (pC)	-19
Source on capacitance (pF)	23
Source off capacitance (pF)	7
Leakage switch on typ. (nA)	0.01
Leakage switch off max. (nA)	1
-3 dB bandwidth (MHz)	226
Package	QFN-12 3 x 3
Functional circuit / applications	Multi purpose, instrumentation, medical and healthcare, portable
Interface	Binary
Single supply operation	Yes
Dual supply operation	-
Turn on time max. (ns)	45
Crosstalk and off isolation (dB)	44

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg?78604.

QFN-12 LEAD (3 X 3)

NOTES:

- 1. All dimensions are in millimeters.
- 2. N is the total number of terminals.

3.

Dimension b applies to metallized terminal and is measured between 0.25 and 0.30 mm from terminal tip. $\,$

Coplanarity applies to the exposed heat sink slug as well as the terminal.

 The pin #1 identifier may be either a mold or marked feature, it must be located within the zone iindicated.

	МІ	LLIMETE	RS				
Dim	Min	Nom	Max	Min	Nom	Max	
Α	0.80	0.90	1.00	0.032	0.035	0.039	
b	0.18	0.23	0.30	0.007	0.009	0.012	
D		3.00 BSC 0.118 BSC					
D2	1.00	1.15	1.25	0.039 0.045 0.049			
Е	3.00 BSC			0.118 BSC			
E2	1.00	1.15	1.25	0.039 0.045 0.04			
е		0.50 BSC			0.02 BSC		
L	0.45	0.55	0.65	0.018 0.022 0.026			
AA	0.435 0.017						
BB	0.435 0.017						
CC	0.18			0.007			
DD	0.18 0.007						
	ECN: C-03092—Rev. A, 14-Apr-03 DWG: 5898						

Document Number: 72209

14-Apr-03

www.vishay.com

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.