

Vishay Semiconductors

Window Size Calculator for TCRT5000 and TCRT5000L

INTRODUCTION

This calculation is used to dimension an appropriately sized window for the TCRT5000 depending on its distance to the sensor. The angles at half intensity / half sensitivity of emitter and detector are considered. A window should be at least large enough so that a signal path over these half intensity / half sensitivity angles is not blocked by an aperture. Blocking the emitted signal can result in increased offsets or decreased sensitivity.

WINDOW CALCULATOR IN X-DIRECTION

Parameters and Formula

$$\begin{split} h_{x1} &= 4.7 \text{ mm / } \tan(29.5^\circ) = 8.3 \text{ mm} \\ h_{x2} &= 4.7 \text{ mm / } \tan(43.5^\circ) = 5.0 \text{ mm} \\ d_{x1} &= \tan(29.5^\circ) \text{ x (a - 8.3 mm)} \\ d_{x2} &= \tan(43.5^\circ) \text{ x (a - 5.0 mm)} \\ d_{\text{min.}} &= 6.7 \text{ mm} \end{split}$$

If the distance **a** to the window is smaller than 5.0 mm, then: $d = d_{min.} = 6.7 \text{ mm}$

If the distance **a** to the window is greater than 5.0 mm but smaller than 8.3 mm, then:

 $d = d_{min.} + d_{x2} = 6.7 \text{ mm} + \tan(43.5^{\circ}) \text{ x} (a - 5 \text{ mm})$

If the distance a to the window is greater than 8.3 mm, then: $d = d_{min.} + d_{x1} + d_{x2} = 6.7 \text{ mm} + \tan(29.5^{\circ}) \text{ x (a - 8.3 mm)} + \tan(43.5^{\circ}) \text{ x (a - 5 mm)}$

Example Calculations

...

 $a = \mathbf{0} \text{ mm} \rightarrow d = d_{\text{min.}} = 6.7 \text{ mm}$ $a = \mathbf{1} \text{ mm} \rightarrow d = d_{\text{min.}} = 6.7 \text{ mm}$

 $a = 5 \text{ mm} \rightarrow d = d_{\text{min.}} = 6.7 \text{ mm}$

a = 6 mm \rightarrow d = d_{min.} + d_{x2} = 6.7 mm + tan(43.5°) x (6 mm - 5 mm) = 7.6 mm

a = 7 mm \rightarrow d = d_{min.} + d_{x2} = 6.7 mm + tan(43.5°) x (7 mm - 5 mm) = 8.6 mm

a = 9 mm →d = $d_{min.} + d_{x1} + d_{x2} = 6.7$ mm + tan(29.5°) x (9 mm - 8.3 mm) + tan(43.5°) x (9 mm - 5 mm) = d = 6.7 mm + 0.4 mm + 3.8 mm = 10.9 mm

a = 10 mm →d = $d_{min.} + d_{x1} + d_{x2} = 6.7$ mm + tan(29.5°) x (10 mm - 8.3 mm) + tan(43.5°) x (10 mm - 5 mm) = d = 6.7 mm + 1.0 mm + 4.7 mm = 12.4 mm

Vishay Semiconductors

WINDOW CALCULATOR IN Y-DIRECTION

Parameters and Formula

d_y = tan(30°) x a h_x = 1.55 mm / tan(30°) = 2.7 mm

If the distance a to the window is smaller than 2.7 mm, then: $d=d_{min.}=3.1\mbox{ mm}$

If the distance a to the window is greater than 2.7 mm, then: $d = 2 \times d_y = 2 \times tan(30^\circ) \times a$

Example Calculations

a = 0 mm →d = d min = 3.1 mm a = 1 mm →d = d min = 3.1 mm a = 2 mm →d = d min = 3.1 mm a = 3 mm →d = 2 x tan(30°) x 3 mm d = 1.16 x 3 mm = 3.5 mm a = 4 mm →d = 1.16 x 4 mm = 4.6 mm a = 5 mm →d = 1.16 x 5 mm = 5.8 mm ... a = 10 mm →d = 1.16 x 10 mm = 11.6 mm