IR Receiver Modules for Remote Control Systems

FEATURES
- Very low supply current
- Photo detector and preamplifier in one package
- Optimized for Sony 12, 15, and 20 bit IR-code
- Internal filter for PCM frequency
- Improved shielding against EMI
- Supply voltage: 2.5 V to 5.5 V
- Improved immunity against ambient light
- Insensitive to supply voltage ripple and noise
- Very narrow optical filter to minimize the interference from 3D synchronizing signals and other optical noise sources
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DESCRIPTION
The TSOP32S40F, TSOP34S40F series are miniaturized IR receiver modules for infrared remote control systems. A PIN diode and a preamplifier are assembled on lead frame, the epoxy package contains an IR filter.

The demodulated output signal can be directly decoded by a microprocessor. The TSOP32S40F, TSOP34S40F are compatible with 12, 15, and 20 bit Sony codes. They are optimized to suppress almost all spurious pulses from energy saving fluorescent lamps but will also suppress some data signals.

These components have not been qualified according to automotive specifications.

PARTS TABLE

<table>
<thead>
<tr>
<th>AGC</th>
<th>SONY (AGC-S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier frequency</td>
<td>40 kHz</td>
</tr>
<tr>
<td>Package</td>
<td>Mold</td>
</tr>
<tr>
<td>Pinning</td>
<td>1 = OUT, 2 = GND, 3 = VS</td>
</tr>
<tr>
<td>Dimensions (mm)</td>
<td>6.0 W x 6.95 H x 5.6 D</td>
</tr>
<tr>
<td>Mounting</td>
<td>Leaded</td>
</tr>
<tr>
<td>Best choice for</td>
<td>(1) Sony 12, 15, and 20 bit IR-codes</td>
</tr>
</tbody>
</table>

BLOCK DIAGRAM

APPLICATION CIRCUIT

R₁ and C₁ recommended to reduce supply ripple for $V_S < 2.8 \text{ V}$
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_S</td>
<td></td>
<td>-0.3 to +6</td>
<td>V</td>
</tr>
<tr>
<td>Supply current</td>
<td>I_S</td>
<td></td>
<td>3</td>
<td>mA</td>
</tr>
<tr>
<td>Output voltage</td>
<td>V_O</td>
<td></td>
<td>-0.3 to $(V_S + 0.3)$</td>
<td>V</td>
</tr>
<tr>
<td>Output current</td>
<td>I_O</td>
<td></td>
<td>5</td>
<td>mA</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>T_J</td>
<td></td>
<td>100</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>T_{stg}</td>
<td></td>
<td>-25 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>T_{amb}</td>
<td></td>
<td>-25 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>Power consumption</td>
<td>P_{tot}</td>
<td></td>
<td>10</td>
<td>mW</td>
</tr>
<tr>
<td>Soldering temperature</td>
<td>T_{sd}</td>
<td></td>
<td>260</td>
<td>°C</td>
</tr>
</tbody>
</table>

Note
- Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect the device reliability.

ELECTRICAL AND OPTICAL CHARACTERISTICS ($T_{amb} = 25 \, ^\circ C$, unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply current</td>
<td>$E_v = 0, , V_S = 3.3 , V$</td>
<td>I_{SD}</td>
<td>0.27</td>
<td>0.35</td>
<td>0.45</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>$E_v = 40 , \text{kix}, , \text{sunlight}$</td>
<td>I_{SH}</td>
<td>-</td>
<td>0.45</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td>Transmission distance</td>
<td>$E_v = 0, , \text{test signal see Fig. 1, IR diode TSAL6200, } I_F = 50 , mA$</td>
<td>d</td>
<td>-</td>
<td>30</td>
<td>-</td>
<td>m</td>
</tr>
<tr>
<td>Output voltage low</td>
<td>$I_{OSL} = 0.5 , mA, , E_e = 0.7 , \text{mW/m}^2, , \text{test signal see Fig. 1}$</td>
<td>V_{OSL}</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>mV</td>
</tr>
<tr>
<td>Minimum irradiance</td>
<td>Pulse width tolerance: $t_{pi} - 5/f_0 < t_{po} < t_{pi} + 6/f_0$, test signal see Fig. 1</td>
<td>$E_{e_{min.}}$</td>
<td>-</td>
<td>0.08</td>
<td>0.15</td>
<td>mW/m²</td>
</tr>
<tr>
<td>Maximum irradiance</td>
<td>$t_{pi} - 5/f_0 < t_{po} < t_{pi} + 6/f_0$, test signal see Fig. 1</td>
<td>$E_{e_{max.}}$</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>W/m²</td>
</tr>
<tr>
<td>Directivity</td>
<td>Angle of half transmission distance</td>
<td>$\varphi_{1/2}$</td>
<td>-</td>
<td>± 45</td>
<td>-</td>
<td>°</td>
</tr>
</tbody>
</table>

TYPICAL CHARACTERISTICS ($T_{amb} = 25 \, ^\circ C$, unless otherwise specified)

This document is subject to change without notice. The products described herein and this document are subject to specific disclaimers, set forth at www.vishay.com/doc?91000
Fig. 3 - Output Function

Optical Test Signal

- E_e - Irradiance (mW/m²)
- t_{on} - Output Pulse Width (ms)
- t_{off} - Output Pulse Width (ms)

$t = 60$ ms

Output Signal, (see Fig. 4)

V_O, V_{OH}, V_{OL}

$600 \mu s, 600 \mu s$

Fig. 4 - Output Pulse Diagram

t_{on}, t_{off} - Output Pulse Width (ms)

$\lambda = 950$ nm, optical test signal, fig. 3

$E_e -$ Irradiance (mW/m²)

0.1 1 10 100 1000 $10,000$

Fig. 5 - Frequency Dependence of Responsivity

$E_{rms}/E_s -$ Relative Responsivity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

$f/f_0 -$ Relative Frequency

0.7 0.9 1.1 1.3

$\Delta f(3$ dB$) = f_s/10$

$f = f_0$ ± 5 %

Fig. 6 - Sensitivity in Bright Ambient

$E_e_{min.}/E_e -$ Relative Responsivity

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

$E_e -$ Ambient DC Irradiance (W/m²)

0.01 0.1 1 10 100 1000 $10,000$

ΔV_{RM} - AC Voltage on DC Supply Voltage (mV)

0 0.5 1.0 1.5 2.0 2.5 3.0

$f = f_0$

$f = 30$ kHz

$f = 10$ kHz

$f = 100$ Hz

$E_e min. -$ Threshold Irradiance (mW/m²)

10 W/m² = 1.4 klx (std. illum. A, $T = 2855$ K)

10 W/m² = 8.2 klx (daylight, $T = 5900$ K)

Wavelength of ambient illumination: $\lambda = 950$ nm

Correlation with ambient light sources:

10 W/m² = 1.4 klx (std. illum. A, $T = 2855$ K)

10 W/m² = 8.2 klx (daylight, $T = 5900$ K)

$E_{min.}$ - Threshold Irradiance (mW/m²)

Correlation with ambient light sources:

10 W/m² = 1.4 klx (std. illum. A, $T = 2855$ K)

10 W/m² = 8.2 klx (daylight, $T = 5900$ K)

$E_e min./E_e -$ Relative Responsivity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

$E_e min. -$ Threshold Irradiance (mW/m²)

0.01 0.1 1 10 100 1000 $10,000$

$E_e -$ Ambient DC Irradiance (W/m²)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

$E_{rms} -$ Irradiance (mW/m²)

0.1 1 10 100 1000 $10,000$

$\Delta V_{RM} -$ AC Voltage on DC Supply Voltage (mV)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Burst Length (number of cycles/burst)

0 25 50 75 100 125 150

Fig. 7 - Sensitivity vs. Supply Voltage Disturbances

Fig. 8 - Max. Envelope Duty Cycle vs. Burst Length

Max. Envelope Duty Cycle

TSOP32S40F, TSOP34S40F

$E_e = 2$ mW/m²

$f = 38$ kHz

Correlation with ambient light sources:

10 W/m² = 1.4 klx (std. illum. A, $T = 2855$ K)

10 W/m² = 8.2 klx (daylight, $T = 5900$ K)

$E_{min.}$ - Threshold Irradiance (mW/m²)

Correlation with ambient light sources:

10 W/m² = 1.4 klx (std. illum. A, $T = 2855$ K)

10 W/m² = 8.2 klx (daylight, $T = 5900$ K)

$E_e min./E_e -$ Relative Responsivity

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

$E_e min. -$ Threshold Irradiance (mW/m²)

0.01 0.1 1 10 100 1000 $10,000$

$E_e -$ Ambient DC Irradiance (W/m²)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

$E_{rms} -$ Irradiance (mW/m²)

0.1 1 10 100 1000 $10,000$

$\Delta V_{RM} -$ AC Voltage on DC Supply Voltage (mV)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Burst Length (number of cycles/burst)

0 25 50 75 100 125 150

Fig. 8 - Max. Envelope Duty Cycle vs. Burst Length

Max. Envelope Duty Cycle

TSOP32S40F, TSOP34S40F

$E_e = 2$ mW/m²

$f = 38$ kHz

Correlation with ambient light sources:

10 W/m² = 1.4 klx (std. illum. A, $T = 2855$ K)

10 W/m² = 8.2 klx (daylight, $T = 5900$ K)

$E_{min.}$ - Threshold Irradiance (mW/m²)

Correlation with ambient light sources:

10 W/m² = 1.4 klx (std. illum. A, $T = 2855$ K)

10 W/m² = 8.2 klx (daylight, $T = 5900$ K)
Fig. 9 - Sensitivity vs. Ambient Temperature

Fig. 11 - Horizontal Directivity

Fig. 10 - Relative Spectral Sensitivity vs. Wavelength

Fig. 12 - Sensitivity vs. Supply Voltage
SUITABLE DATA FORMAT

The TSOP32S40F, TSOP34S40F parts are designed to suppress spurious output pulses due to noise or disturbance signals. Data and disturbance signals can be distinguished by the devices according to carrier frequency, burst length and envelope duty cycle. The data signal should be close to the band-pass center frequency (40 kHz) and fulfill the conditions in the table below.

When a data signal is applied to the TSOP32S40F, TSOP34S40F in the presence of a disturbance signal, the sensitivity of the receiver is reduced to insure that no spurious pulses are present at the output. Some examples of disturbance signals which are suppressed are:

- DC light (e.g. from tungsten bulb or sunlight)
- Continuous signals at any frequency
- Strongly or weakly modulated noise from fluorescent lamps with electronic ballasts (see Fig. 13 or Fig. 14).

<table>
<thead>
<tr>
<th>Minimum burst length: 10 cycles/burst</th>
</tr>
</thead>
<tbody>
<tr>
<td>After each burst of length, a minimum gap time is required of 10 to 70 cycles ≥ 10 cycles</td>
</tr>
<tr>
<td>For bursts greater than a minimum gap time in the data stream is needed of 70 cycles x 10 x burst length</td>
</tr>
<tr>
<td>Maximum number of continuous short bursts/second: 1800</td>
</tr>
<tr>
<td>Suppression of interference from fluorescent lamps: Most common disturbance patterns are suppressed</td>
</tr>
</tbody>
</table>

Fig. 13 - IR Disturbance from Fluorescent Lamp With Low Modulation

Fig. 14 - IR Disturbance from Fluorescent Lamp With High Modulation
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.