
VISHAY. SFI

SFH1690AT, SFH1690BT, SFH1690CT, SFH1690ABT

Vishay Semiconductors

Optocoupler Phototransistor Output, SOP-4, Mini-Flat Package, 110 °C Rated

LINKS TO ADDITIONAL RESOURCES

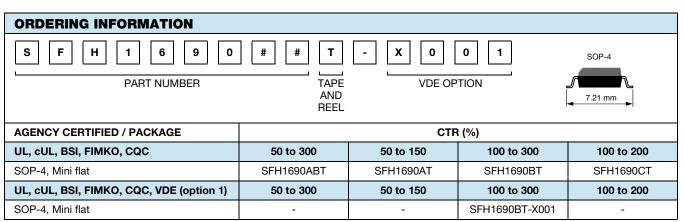
DESCRIPTION

The 110 °C rated SFH1690AT, SFH1690BT, SFH1690CT, and SFH1690ABT family has a GaAs infrared emitting diode emitter, which is optically coupled to a silicon planar phototransistor detector, and is incorporated in a 4 pin 100 mil lead pitch miniflat package. It features a high current transfer ratio, low coupling capacitance, and high isolation voltage.

The coupling devices are designed for signal transmission between two electrically separated circuits. The SFH1690 series is available only on tape and reel. There are 2000

parts per reel.

FEATURES


- Operating temperature from 55 °C to + 110 °C
- SOP (small outline package)
- Isolation test voltage, 3750 V_{RMS} (1 s)
- Low saturation voltage
- Fast switching times
- Low coupling capacitance
- End-stackable, 0.100" (2.54 mm) spacing
- Material categorization: for definitions of (5-2008) compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- PLCs
- Telecommunication

AGENCY APPROVALS

- <u>UL</u>
- <u>cUL</u>
- DIN EN 60747-5-5 (VDE 0884-5), available with option 1
- <u>BSI</u>
- CQC GB4943.1
- CQC GB8898
- <u>FIMKO</u>

Note

· For additional information on the available options refer to option information

1

RoHS

HALOGEN

FREE

GREEN

www.vishay.com

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT				
INPUT								
DC forward current		I _F	50	mA				
Reverse voltage		V _R	6	V				
Surge forward current	t _p ≤ 10 μs	I _{FSM}	2.5	А				
Power dissipation		P _{diss}	80	mW				
Derate linearly from 25 °C			0.7	mW/°C				
OUTPUT								
Collector emitter voltage		V _{CEO}	70	V				
Emitter collector voltage		V _{ECO}	7	V				
Collector current		Ι _C	50	mA				
	t _p ≤ 1 ms	Ι _C	100	mW				
Power dissipation		P _{diss}	150	mW				
Derate linearly from 25 °C			1.5	mW/°C				
COUPLER								
Isolation test voltage between emitter and detector	t = 1 s	V _{ISO}	3750	V _{RMS}				
Operating temperature range		T _{amb}	-55 to +110	°C				
Storage temperature range		T _{stg}	-55 to +150	°C				
Soldering temperature	max. 10 s dip soldering distance to seating plane ≥ 1.5 mm	T _{sld}	260	°C				

Note

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not
implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
maximum ratings for extended periods of the time can adversely affect reliability.

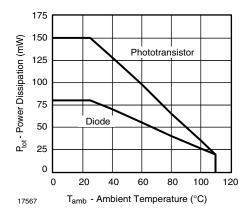


Fig. 1 - Permissible Power Dissipation vs. Temperature

www.vishay.com

Vishay Semiconductors

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT	
INPUT								
Forward voltage	$I_F = 5 \text{ mA}$		V _F	-	1.15	1.4	V	
Reverse current	V _R = 6 V		I _R	-	0.01	10	μA	
Capacitance	$V_R = 0 V$, f = 1 MHz		Co	-	14		pF	
OUTPUT	OUTPUT							
Collector emitter leakage current	$V_{CE} = 20 V$		I _{CEO}	-	-	100	nA	
Collector emitter breakdown voltage	I _C = 100 μA		BV _{CEO}	70	-	-	V	
Emitter collector breakdown voltage	I _E = - 10 μA		BV _{ECO}	7	-	-	V	
Collector emitter saturation voltage	$I_F = 10 \text{ mA}, I_C = 2.5 \text{ mA}$		V _{CEsat}	-	0.25	0.4	V	
Collector emitter capacitance	$V_{CE} = 5 V$, f = 1 MHz		C _{CE}	-	2.8	-	pF	
COUPLER								
Coupling capacitance	f = 1 MHz		C _C	-	0.3	-	pF	
Capacitance (input to output)			CIO	-	0.5	-	рF	

Note

 Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

CURRENT TRANSFER RATIO (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
I _C /I _F	I _F = 5 mA, V _{CE} = 5 V	SFH1690ABT	CTR	50	-	300	%
		SFH1690AT	CTR	50	-	150	%
		SFH1690BT	CTR	100	-	300	%
		SFH1690CT	CTR	100	-	200	%

Note

• Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

SWITCHING CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Rise time	V_{CC} = 5 V, I_{C} = 2 mA, R_{L} = 100 Ω	t _r	-	3	-	μs	
Fall time	V_{CC} = 5 V, I_C = 2 mA, R_L = 100 Ω	t _f	-	4	-	μs	
Turn-on time	V_{CC} = 5 V, I_{C} = 2 mA, R_{L} = 100 Ω	t _{on}	-	5	-	μs	
Turn-off time	V_{CC} = 5 V, I_C = 2 mA, R_L = 100 Ω	t _{off}	-	3	-	μs	



Fig. 2 - Switching Operation (without Saturation)

3

www.vishay.com

Vishay Semiconductors

SAFETY AND INSULATION RATINGS							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Climatic classification (according to IEC 68 part 1)			-	55 / 110 / 21	-		
Pollution degree (DIN VDE 0109)			-	2	-	mm	
Comparative tracking index per DIN IEC112 / VDE 0303 part 1, group Illa per DIN VDE 6110 175 399			175	-	399		
V _{IOTM}		V _{IOTM}	6000	-	-	V	
V _{IORM}		V _{IORM}	707	-	-	V	
	V _{IO} = 500 V, T _{amb} = 25 °C	R _{IO}	-	-	≥ 10 ¹²	Ω	
Isolation resistance	$V_{IO} = 500 \text{ V}, \text{ T}_{amb} = 100 ^{\circ}\text{C}$	R _{IO}	-	-	≥ 10 ¹¹	Ω	
P _{SO}			-	-	350	mW	
I _{SI}			-	-	150	mA	
T _{SI}			-	-	165	°C	
Creepage distance			5	-	-	mm	
Clearance distance			5	-	-	mm	
Insulation thickness between emitter and detector			≥ 0.4	-	-	mm	

Note

• As per IEC 60747-5-5, §7.4.3.8.1, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of protective circuits.

TYPICAL CHARACTERISTICS (Tamb = 25 °C, unless otherwise specified)

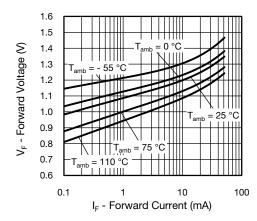


Fig. 3 - Forward Voltage vs. Forward Current

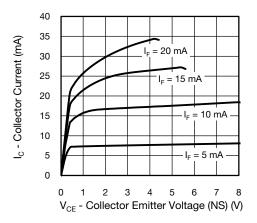


Fig. 4 - Collector Current vs. Collector Emitter Voltage (NS)

Vishay Semiconductors

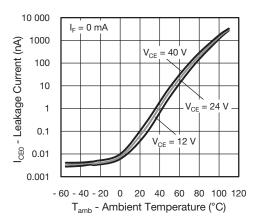


Fig. 5 - Leakage Current vs. Ambient Temperature

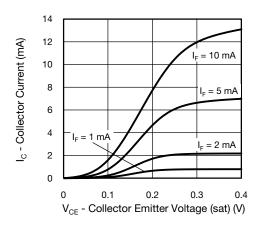


Fig. 6 - Collector Current vs. Collector Emitter Voltage (sat)

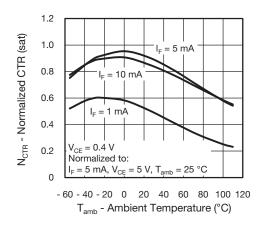


Fig. 7 - Normalized Current Transfer Ratio (sat) vs. Ambient Temperature

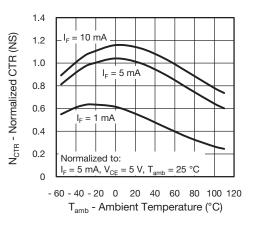


Fig. 8 - Normalized Current Transfer Ratio (NS) vs. Ambient Temperature

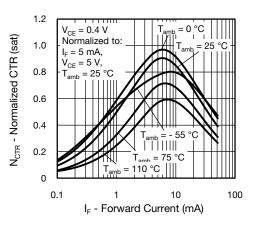


Fig. 9 - Normalized CTR (sat) vs. Forward Current

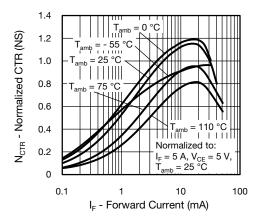


Fig. 10 - Normalized CTR (NS) vs. Forward Current

Rev. 2.2, 25-Apr-2023

5

For technical questions, contact: <u>optocoupleranswers@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors

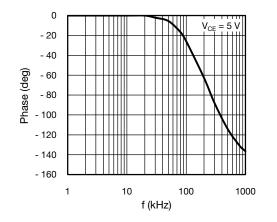


Fig. 11 - F_{CTR} vs. Phase Angle

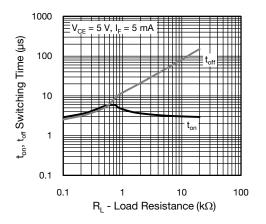
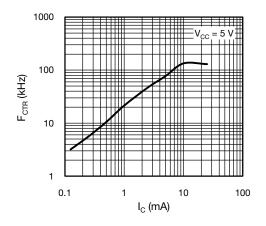
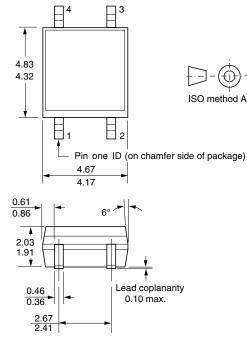
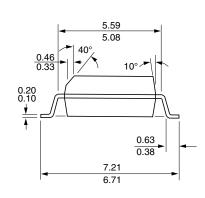
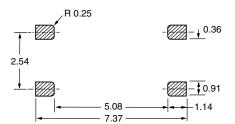


Fig. 13 - Switching Time vs. Load Resistance



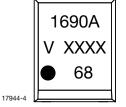

Fig. 12 - F_{CTR} vs. Collector Current

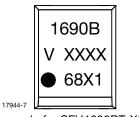



www.vishay.com

Vishay Semiconductors

PACKAGE DIMENSIONS in millimeters





i178037

PACKAGE MARKING

(example for SFH1690AT)

(example for SFH1690BT-X001)

Notes

- XXXX = LMC (lot marking code)
- The marking of the SFH1690ABT will either show 1690A or 1690B on the first line
- Tape and reel suffix (T) is not part of the package marking

7

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2025 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2025

1