Transmissive Optical Sensor with Phototransistor Output

DESCRIPTION

The TCST1103, TCST1202, and TCST1300 are transmissive sensors that include an infrared emitter and phototransistor, located face-to-face on the optical axes in a leaded package which blocks visible light. These part numbers include options for aperture width.

FEATURES

- Package type: leaded
- Detector type: phototransistor
- Dimensions (L x W x H in mm): 11.9 x 6.3 x 10.8
- Gap (in mm): 3.1
- Typical output current under test: $I_C = 4$ mA (TCST1103)
- Typical output current under test: $I_C = 2$ mA (TCST1202)
- Typical output current under test: $I_C = 0.5$ mA (TCST1300)
- Daylight blocking filter
- Emitter wavelength: 950 nm
- Lead (Pb)-free soldering released
- Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC

APPLICATIONS

- Optical switch
- Photo interrupter
- Counter
- Encoder

PRODUCT SUMMARY

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>GAP WIDTH (mm)</th>
<th>APERTURE WIDTH (mm)</th>
<th>TYPICAL OUTPUT CURRENT UNDER TEST (mA)</th>
<th>DAYLIGHT BLOCKING FILTER INTEGRATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCST1103</td>
<td>3.1</td>
<td>1</td>
<td>4</td>
<td>Yes</td>
</tr>
<tr>
<td>TCST1202</td>
<td>3.1</td>
<td>0.5</td>
<td>2</td>
<td>Yes</td>
</tr>
<tr>
<td>TCST1300</td>
<td>3.1</td>
<td>0.25</td>
<td>0.5</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note

- Conditions like in table basic characteristics/coupler

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>ORDERING CODE</th>
<th>PACKAGING</th>
<th>VOLUME (1)</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCST1103</td>
<td>Tube</td>
<td>MOQ: 1020 pcs, 85 pcs/tube</td>
<td>Without mounting flange</td>
</tr>
<tr>
<td>TCST1202</td>
<td>Tube</td>
<td>MOQ: 1020 pcs, 85 pcs/tube</td>
<td>Without mounting flange</td>
</tr>
<tr>
<td>TCST1300</td>
<td>Tube</td>
<td>MOQ: 1020 pcs, 85 pcs/tube</td>
<td>Without mounting flange</td>
</tr>
</tbody>
</table>

Note

- MOQ: minimum order quantity

ABSOLUTE MAXIMUM RATINGS ($T_{amb} = 25$ °C, unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUPLER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>$T_{amb} \leq 25$ °C</td>
<td>P_{tot}</td>
<td>250</td>
<td>mW</td>
</tr>
<tr>
<td>Ambient temperature range</td>
<td></td>
<td>T_{amb}</td>
<td>-55 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td></td>
<td>T_{stg}</td>
<td>-55 to +100</td>
<td>°C</td>
</tr>
<tr>
<td>Soldering temperature</td>
<td>Distance to package: 2 mm; t \leq 5 s</td>
<td>T_{sd}</td>
<td>260</td>
<td>°C</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings

\((T_{\text{amb}} = 25 \, ^{\circ}\text{C}, \text{unless otherwise specified}) \)

Input (Emitter)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Condition</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse voltage</td>
<td>(V_R)</td>
<td>6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Forward current</td>
<td>(I_F)</td>
<td>60</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Forward surge current</td>
<td>(I_{FSM})</td>
<td>3</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P_V)</td>
<td>100</td>
<td>mW</td>
<td></td>
</tr>
<tr>
<td>Junction temperature</td>
<td>(T_j)</td>
<td>100</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

Output (Detector)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Condition</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector emitter voltage</td>
<td>(V_{CEO})</td>
<td>70</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Emitter collector voltage</td>
<td>(V_{ECO})</td>
<td>7</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Collector peak current</td>
<td>(I_{CM})</td>
<td>200</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Power dissipation</td>
<td>(P_V)</td>
<td>150</td>
<td>mW</td>
<td></td>
</tr>
<tr>
<td>Junction temperature</td>
<td>(T_j)</td>
<td>100</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

Basic Characteristics

\((T_{\text{amb}} = 25 \, ^{\circ}\text{C}, \text{unless otherwise specified}) \)

Coupler

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Condition</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current transfer ratio</td>
<td>(V_{CE} = 5 , V, , I_F = 20 , mA)</td>
<td>TCST1103</td>
<td>CTR</td>
<td>10</td>
<td>20</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>(V_{CE} = 5 , V, , I_F = 20 , mA)</td>
<td>TCST1202</td>
<td>CTR</td>
<td>5</td>
<td>10</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>(V_{CE} = 5 , V, , I_F = 20 , mA)</td>
<td>TCST1300</td>
<td>CTR</td>
<td>1.25</td>
<td>2.5</td>
<td>%</td>
</tr>
<tr>
<td>Collector current</td>
<td>(V_{CE} = 5 , V, , I_F = 20 , mA)</td>
<td>TCST1103</td>
<td>(I_C)</td>
<td>2</td>
<td>4</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>(V_{CE} = 5 , V, , I_F = 20 , mA)</td>
<td>TCST1202</td>
<td>(I_C)</td>
<td>1</td>
<td>2</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>(V_{CE} = 5 , V, , I_F = 20 , mA)</td>
<td>TCST1300</td>
<td>(I_C)</td>
<td>0.25</td>
<td>0.5</td>
<td>mA</td>
</tr>
<tr>
<td>Collector emitter saturation voltage</td>
<td>(I_F = 20 , mA, , I_C = 1 , mA)</td>
<td>TCST1103</td>
<td>(V_{CEsat})</td>
<td>0.4</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(I_F = 20 , mA, , I_C = 0.5 , mA)</td>
<td>TCST1202</td>
<td>(V_{CEsat})</td>
<td>0.4</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(I_F = 20 , mA, , I_C = 0.1 , mA)</td>
<td>TCST1300</td>
<td>(V_{CEsat})</td>
<td>0.4</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Resolution, path of the shutter crossing the radiant sensitive zone</td>
<td>(I_{Crel} = 10 , % , to , 90 , %)</td>
<td>TCST1103</td>
<td>(s)</td>
<td>0.6</td>
<td>-</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td>(I_{Crel} = 10 , % , to , 90 , %)</td>
<td>TCST1202</td>
<td>(s)</td>
<td>0.4</td>
<td>-</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td>(I_{Crel} = 10 , % , to , 90 , %)</td>
<td>TCST1300</td>
<td>(s)</td>
<td>0.2</td>
<td>-</td>
<td>mm</td>
</tr>
</tbody>
</table>
BASIC CHARACTERISTICS (T_{\text{amb}} = 25 ^\circ \text{C}, unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>PART</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT (EMITTER)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td>(I_F = 60 \text{ mA})</td>
<td></td>
<td>(V_F)</td>
<td>1.25</td>
<td>1.6</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Junction capacitance</td>
<td>(V_R = 0 \text{ V}, f = 1 \text{ MHz})</td>
<td></td>
<td>(C_j)</td>
<td>50</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>OUTPUT (DETECTOR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector emitter voltage</td>
<td>(I_C = 1 \text{ mA})</td>
<td></td>
<td>(V_{CEO})</td>
<td>70</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Emitter collector voltage</td>
<td>(I_E = 10 \mu\text{A})</td>
<td></td>
<td>(V_{ECEO})</td>
<td>7</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Collector dark current</td>
<td>(V_{CE} = 25 \text{ V}, I_F = 0 \text{ A, E = 0 lx})</td>
<td></td>
<td>(I_{CEO})</td>
<td>100 nA</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
</tbody>
</table>

SWITCHING CHARACTERISTICS

<table>
<thead>
<tr>
<th></th>
<th>(I_C = 2 \text{ mA, V_S = 5 V, R_L = 100 \Omega}) (see figure 2)</th>
<th>(t_{on})</th>
<th>10</th>
<th>(\mu\text{s})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn-on time</td>
<td>(I_C = 2 \text{ mA, V_S = 5 V, R_L = 100 \Omega}) (see figure 2)</td>
<td>(t_{off})</td>
<td>8</td>
<td>(\mu\text{s})</td>
</tr>
</tbody>
</table>

Fig. 2 - Test Circuit for \(t_{on}\) and \(t_{off}\)

BASIC CHARACTERISTICS (\(T_{\text{amb}} = 25 ^\circ \text{C}\), unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>PART</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector dark current</td>
<td>(V_{CE} = 5 \text{ V}, I_F = 20 \text{ mA})</td>
<td></td>
<td>(C_T)</td>
<td>0.1</td>
<td>0.5</td>
<td>2.0</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3 - Switching Times

Fig. 4 - Forward Current vs. Forward Voltage

Fig. 5 - Relative Current Transfer Ratio vs. Ambient Temperature
Fig. 6 - Collector Dark Current vs. Ambient Temperature

- **I_{CEO} - Collector Dark Current (nA)**
- **T_{amb} - Ambient Temperature (°C)**
- **$V_{CE} = 25$ V, $I_F = 0$ A**

Fig. 7 - Collector Current vs. Forward Current

- **$I_C - Collector Current (mA)$**
- **$I_F - Forward Current (mA)$**
- **$V_{CE} = 5$ V**

Fig. 8 - Collector Current vs. Collector Emitter Voltage

- **$I_C - Collector Current (mA)$**
- **$V_{CE} - Collector Emitter Voltage (V)$**
- **$I_F = 50$ mA, 20 mA, 10 mA, 5 mA, 2 mA, 1 mA**

Fig. 9 - Current Transfer Ratio vs. Forward Current

- **$CTR - Current Transfer Ratio (%)$**
- **$I_C - Collector Current (mA)$**
- **$V_{CE} = 5$ V**

Fig. 10 - Turn-off/Turn-on Time vs. Collector Current

- **$t_{on}, t_{off} - Turn on/Turn off Time (µs)$**
- **Non saturated operation**
- **$V_S = 5$ V, $R_L = 100$ Ω**

Fig. 11 - Relative Collector Current vs. Displacement

- **$I_{rel} - Relative Collector Current$**
- **$A = 1$ mm**
- **$s - Displacement (mm)$**

For technical questions, contact: sensorstechsupport@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
PACKAGE DIMENSIONS in millimeters

![Package Dimensions Diagram]

Fig. 12 - Relative Collector Current vs. Displacement

Fig. 13 - Relative Collector Current vs. Displacement

Drawing-No.: 6.550-5039.01-4

Issue: 2; 10.11.98

weight: ca. 0.80g
TUBE DIMENSIONS in millimeters

With rubber stopper
Tolerance: ±0.5mm
Length: 575±1mm

Drawing-No.: 9.700-5100.01-4
Issue: 1; 25.02.00
Packaging and Ordering Information

TUBE SPECIFICATION FIGURES

![Diagram](image)

With rubber stopper

Tolerance: ±0.5mm
Length: 575±1mm

Drawing-No: 9.700–5097.01-4
Issue: 1, 25 02 00

Fig. 1

### PART NUMBER	MOQ (1)	PCS PER TUBE	TUBE SPEC. (FIGURE)	CONSTITUENTS (FORMS)
CNY70 | 4000 | 80 | 1 | 28
TCPT1300X01 | 2000 | Reel | (2) | 29
TCRT1000 | 1000 | Bulk | - | 26
TCRT1010 | 1000 | Bulk | - | 26
TCRT5000 | 4500 | 50 | 2 | 27
TCRT5000L | 2400 | 48 | 3 | 27
TCST1030 | 5200 | 65 | 5 | 24
TCST1030L | 2600 | 65 | 6 | 24
TCST1103 | 1020 | 85 | 4 | 24
TCST1202 | 1020 | 85 | 4 | 24
TCST1230 | 4800 | 60 | 7 | 24
TCST1300 | 1020 | 85 | 4 | 24
TCST2103 | 1020 | 85 | 4 | 24
TCST2202 | 1020 | 85 | 4 | 24
TCST2300 | 1020 | 85 | 4 | 24
TCST5250 | 4860 | 30 | 8 | 24
TCUT1300X01 | 2000 | Reel | (2) | 29
TCST8020-PAER | 2500 | Bulk | - | 22

Notes

(1) MOQ: minimum order quantity
(2) Please refer to datasheets
Packaging and Ordering Information

Vishay Semiconductors Packaging and Ordering Information

Fig. 2

Drawing No.: 9700-5139.01-4
Issue: 1; 10.05.00

Drawing refers to following types: TCRT 5000

Fig. 3

With rubber stopper
Tolerance: ±0.5mm
Length: 575±1mm

Drawing No.: 9700-5178.01-4
Issue: 1; 25.02.00

With stopper pins
Tolerance: ±0.5mm
Length: 575±1mm
Packaging and Ordering Information
Vishay Semiconductors

Fig. 6
With stopper pins
Tolerance: ±0.5mm
Length: 575±1mm

Drawing-No.: 9700-5205.01-4
Issue 1, 25.02.00

Fig. 7
With rubber stopper
Tolerance: ±0.5mm
Length: 575±1mm

Drawing-No.: 9700-5245.01-4
Issue 1, 25.02.00
Fig. 8

Drawing-No.: 9.700-5222.01-4
Issue: 2; 19.11.04
20257

With stopper pins
Tolerance ±0.5mm
Length: 450 ± 1mm
All dimensions in mm
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.