Reflective Optical Sensor With Transistor Output

DESCRIPTION
The VCNT2020 is a reflective sensor in a miniature SMD package. It has a compact construction where the emitting light source and the detector are arranged in the same plane. The operating infrared wavelength is 940 nm. The detector consists of a silicon phototransistor. The sensor analog output signal (photo current) is triggered by detection of reflected infrared light from a close by object. The sensor has a built in daylight blocking filter, which greatly suppresses disturbing ambient light and therefore increases signal to noise ratio.

FEATURES
- Package type: SMD
- Detector type: phototransistor
- Dimensions (L x W x H in mm): 2.5 x 2 x 0.8
- Operating range within > 20 % relative collector current: 0.2 mm to 2.5 mm
- Emitter wavelength: 940 nm
- Moisture sensitivity level (MSL): 4
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS
- Position sensor
- Optical switch
- Optical encoder (e.g. disc and tape drives for DVD and / or camera applications)
- Object detection (e.g. paper presence in printer and copy machines)

PRODUCT SUMMARY

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DISTANCE FOR MAXIMUM CTR_{rel} (mm)</th>
<th>DISTANCE RANGE FOR RELATIVE I_{out} > 20 % (mm)</th>
<th>TYPICAL OUTPUT CURRENT UNDER TEST (mA)</th>
<th>DAYLIGHT BLOCKING FILTER INTEGRATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCNT2020</td>
<td>0.5</td>
<td>0.2 to 2.5</td>
<td>1.6</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Notes
(1) CTR: current transfer ratio, I_{out}/I_{in}
(2) Conditions like in table basic characteristics/sensors

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>ORDERING CODE</th>
<th>PACKAGING</th>
<th>VOLUME (1)</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCNT2020</td>
<td>Tape and reel</td>
<td>MOQ: 3000 pcs</td>
<td>Drypack, MSL 4</td>
</tr>
</tbody>
</table>

Note
(1) MOQ: minimum order quantity

ABSOLUTE MAXIMUM RATINGS (T_{amb} = 25 °C, unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT (EMITTER)</td>
<td></td>
<td>V_R</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>Reverse voltage</td>
<td></td>
<td>I_F</td>
<td>100</td>
<td>mA</td>
</tr>
<tr>
<td>Forward current</td>
<td></td>
<td>t_p ≤ 100 μs</td>
<td>I_SM</td>
<td>500</td>
</tr>
<tr>
<td>Forward surge current</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTPUT (DETECTOR)</td>
<td></td>
<td>V_{BRCEO}</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>Collector emitter breakdown voltage</td>
<td></td>
<td>V_{ECO}</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td>Collector current</td>
<td></td>
<td>I_C</td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>SENSOR</td>
<td></td>
<td>T_{amb} ≤ 25 °C</td>
<td>P_{tot}</td>
<td>170</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient temperature range</td>
<td></td>
<td>T_{amb}</td>
<td>-25 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td></td>
<td>T_{tstg}</td>
<td>-25 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>Soldering temperature</td>
<td></td>
<td>T_{sd}</td>
<td>260</td>
<td>°C</td>
</tr>
</tbody>
</table>

For technical questions, contact: sensorstechsupport@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Absolute Maximum Ratings

![Power Dissipation vs. Ambient Temperature](image1)

![Forward Current vs. Ambient Temperature](image2)

Basic Characteristics (T_{amb} = 25 °C, unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT (EMITTER)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward voltage</td>
<td></td>
<td>V<sub>F</sub></td>
<td>-</td>
<td>1.25</td>
<td>1.4</td>
<td>V</td>
</tr>
<tr>
<td>Temperature coefficient of V<sub>F</sub></td>
<td>I<sub>F</sub> = 20 mA</td>
<td>TKVF</td>
<td>-</td>
<td>-1.0</td>
<td>-</td>
<td>mV/K</td>
</tr>
<tr>
<td>Peak wavelength</td>
<td></td>
<td>λ<sub>P</sub></td>
<td>-</td>
<td>940</td>
<td>-</td>
<td>nm</td>
</tr>
<tr>
<td>Reverse current</td>
<td></td>
<td>V<sub>R</sub> = 5 V</td>
<td>I<sub>R</sub></td>
<td>-</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>OUTPUT (DETECTOR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector emitter breakdown voltage</td>
<td>I<sub>C</sub> = 0.1 mA, E = 0</td>
<td>V<sub>BRCEO</sub></td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Emitter collector voltage</td>
<td></td>
<td>V<sub>ECEO</sub></td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Collector emitter dark current</td>
<td>V<sub>CE</sub> = 5 V, E = 0</td>
<td>I<sub>CEO</sub></td>
<td>-</td>
<td>1</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>SENSOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector current</td>
<td>V<sub>CE</sub> = 5 V, I<sub>F</sub> = 20 mA, d = 1 mm</td>
<td>I<sub>C</sub></td>
<td>0.5</td>
<td>1.6</td>
<td>3.5</td>
<td>mA</td>
</tr>
<tr>
<td>Current transfer ratio</td>
<td>I<sub>C</sub>/I<sub>E</sub>, d = 1 mm, V<sub>CE</sub> = 5 V</td>
<td>CTR</td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>Rise time</td>
<td>I<sub>C</sub> = 0.8 mA, V<sub>CE</sub> = 5 V, R<sub>L</sub> = 100 Ω</td>
<td>t<sub>r</sub></td>
<td>-</td>
<td>10</td>
<td>70</td>
<td>μs</td>
</tr>
<tr>
<td>Fall time</td>
<td>I<sub>C</sub> = 0.8 mA, V<sub>CE</sub> = 5 V, R<sub>L</sub> = 100 Ω</td>
<td>t<sub>f</sub></td>
<td>-</td>
<td>15</td>
<td>70</td>
<td>μs</td>
</tr>
</tbody>
</table>

![Test Circuit](image3)

For technical questions, contact: sensorstechsupport@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
BASIC CHARACTERISTICS (T_{amb} = 25 \, ^\circ C, unless otherwise specified)

Fig. 4 - Forward Current vs. Forward Voltage

Fig. 5 - Forward Voltage vs. Ambient Temperature

Fig. 6 - Collector Dark Current vs. Ambient Temperature

Fig. 7 - Collector Current vs. Forward Current

Fig. 8 - Relative Collector Current vs. Ambient Temperature

Fig. 9 - Relative Collector Current vs. Distance
FLOOR LIFE

Time between soldering and removing from MBB must not exceed the time indicated in J-STD-020:
- Moisture sensitivity: level 4
- Floor life: 72 h
- Conditions: $T_{amb} < 30 \, ^\circ C$, RH < 60

DRYING

In case of moisture absorption devices should be baked before soldering. Conditions see J-STD-020 or recommended conditions:
- 192 h at 40 \, ^\circ C (+ 5 \, ^\circ C), RH < 5
- or
- 96 h at 60 \, ^\circ C (+ 5 \, ^\circ C), RH < 5

REFLOW SOLDER PROFILE

Fig. 10 - Relative Collector Current vs. Displacement

Fig. 11 - Rise / Fall Time vs. Collector Current

Fig. 12 - Lead (Pb)-free Reflow Solder Profile

According to J-STD-020
PACKAGE DIMENSIONS in millimeters

Drawing-No.: 6.550-5338.01-4
Issue: 1; 16.06.2016

Not indicated tolerances ± 0.1
TAPE AND REEL DIMENSIONS in millimeters

3000 pcs/reel

![Diagram of tape and reel dimensions]

Non tolerated dimensions ± 0.1 mm

Drawing refers to following Type: VCNT2020
Drawing No.: 9.800-5132.01-4
Issue: 1; 18.01.2018
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of
typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding
statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a
particular product with the properties described in the product specification is suitable for use in a particular application.
Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over
time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk.
Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for
such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document
or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.