UV SMD LED with Silicone Lens

DESCRIPTION

VLMU1610-365-135 is a ceramic based mid power UV LED with silicone lens for long life time. The package size is 1.6 mm x 1.6 mm and the radiant power up to 26 mW at 20 mA in a wavelength range of 362.5 nm to 370 nm.

PRODUCT GROUP AND PACKAGE DATA

- Product group: LED
- Package: SMD ceramic mid power
- Product series: mid power UV LED
- Angle of half intensity: ± 67.5°
- Lead-finishing: Au

SAFETY ADVICES

Depending on the mode of operation, these devices emit highly concentrated non visible ultraviolet light which can be hazardous to the human eye. Products which incorporate these devices have to follow the safety precautions given in IEC 62471 “Photobiological Safety of Lamps and Lamp Systems.”

FEATURES

- Ceramic SMT package with silicone lens
- Dimension (L x W x H) in mm: 1.6 x 1.6 x 1.4
- Forward current: up to 60 mA
- Radiant power (typ.): 23 mW at 20 mA, 63 mW at 60 mA
- Materials:
 - Die: InGaN
 - Resin: silicone (water clear)
 - Leads / terminations finish: gold plated (Au)
- Grouping parameters:
 - Radiant power
 - Peak wavelength
 - Forward voltage
- Reflow soldering method
- MSL 3 according to J-STD-020
- Packaging: MOQ = 6000 pieces; 12 mm tape with 1500 pieces per reel, Ø 180 mm (7”)
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Industrial curing
- Photocatalytic purification
- Poster printing curing
- Counterfeit money detector
- Blood detector
- Nail curing
- Teeth curing

PARTS TABLE

<table>
<thead>
<tr>
<th>PART</th>
<th>COLOR</th>
<th>RADIANT POWER (mW) at I<sub>F</sub> (mA)</th>
<th>WAVELENGTH (nm) at I<sub>F</sub> (mA)</th>
<th>FORWARD VOLTAGE (V) at I<sub>F</sub> (mA)</th>
<th>TECHNOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLMU1610-365-135</td>
<td>Ultraviolet</td>
<td>14 23 26 20 362.5 367 370 20 2.8 3.5 4.0 20</td>
<td>InGaN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS

(T_{amb} = 25 °C, unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC forward current</td>
<td>I<sub>F</sub></td>
<td>60</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Pulse forward current</td>
<td>I<sub>FP</sub></td>
<td>300</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P<sub>V</sub></td>
<td>240</td>
<td>mW</td>
<td></td>
</tr>
<tr>
<td>Reverse voltage</td>
<td>Not designed for reverse operation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction temperature</td>
<td>T<sub>j</sub></td>
<td>+90</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>T<sub>amb</sub></td>
<td>-40 to +85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>T<sub>stg</sub></td>
<td>-40 to +90</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Solder temperature</td>
<td>T<sub>sol</sub></td>
<td>260</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>
OPTICAL AND ELECTRICAL CHARACTERISTICS (T_{\text{amb}} = 25 ^\circ \text{C}, unless otherwise specified)

VLMU1610-365-135, ULTRAVIOLET

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>I_F = 20 mA</td>
<td>V_F</td>
<td>2.8</td>
<td>3.5</td>
<td>4.0</td>
<td>V</td>
</tr>
<tr>
<td>Radiant power</td>
<td>I_F = 20 mA</td>
<td>\phi_e</td>
<td>14</td>
<td>23</td>
<td>26</td>
<td>mW</td>
</tr>
<tr>
<td>Ratio: radiant intensity/radiant flux</td>
<td>I_F = 20 mA</td>
<td>\lambda_p/\phi_e</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>sr^{-1}</td>
</tr>
<tr>
<td>Peak wavelength</td>
<td>I_F = 20 mA</td>
<td>\lambda_p</td>
<td>362.5</td>
<td>367</td>
<td>370</td>
<td>nm</td>
</tr>
<tr>
<td>Angle of half intensity</td>
<td>I_F = 20 mA</td>
<td>\phi</td>
<td>-</td>
<td>± 67.5</td>
<td>-</td>
<td>deg</td>
</tr>
<tr>
<td>Reverse voltage</td>
<td></td>
<td>V_R</td>
<td>-</td>
<td>-</td>
<td>1.2</td>
<td>V</td>
</tr>
<tr>
<td>Thermal resistance junction to case</td>
<td></td>
<td>R_{\text{thJC}}</td>
<td>-</td>
<td>53</td>
<td>-</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Notes
- Tolerances: ± 11 % for \phi_e, ± 0.1 V for V_F, ± 3 nm for \lambda_p
- Reverse current is applied for reverse voltage test only (function test of Zener diode). The device is not designed for reverse operation. Operating the LED under reverse current condition for long time might result in damage or failure of the component

RADIANT POWER CLASSIFICATION (I_F = 20 mA)

<table>
<thead>
<tr>
<th>GROUP</th>
<th>MIN.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R3</td>
<td>14</td>
<td>16</td>
<td>mW</td>
</tr>
<tr>
<td>R4</td>
<td>16</td>
<td>18</td>
<td>mW</td>
</tr>
<tr>
<td>R5</td>
<td>18</td>
<td>20</td>
<td>mW</td>
</tr>
<tr>
<td>R6</td>
<td>20</td>
<td>22</td>
<td>mW</td>
</tr>
<tr>
<td>R7</td>
<td>22</td>
<td>24</td>
<td>mW</td>
</tr>
<tr>
<td>R8</td>
<td>24</td>
<td>26</td>
<td>mW</td>
</tr>
</tbody>
</table>

PEAK WAVELENGTH CLASSIFICATION (I_F = 20 mA)

<table>
<thead>
<tr>
<th>GROUP</th>
<th>MIN.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3M2</td>
<td>362.5</td>
<td>365</td>
<td>nm</td>
</tr>
<tr>
<td>P3N1</td>
<td>365</td>
<td>367.5</td>
<td>nm</td>
</tr>
<tr>
<td>P3N2</td>
<td>367.5</td>
<td>370</td>
<td>nm</td>
</tr>
</tbody>
</table>

FORWARD VOLTAGE CLASSIFICATION (I_F = 20 mA)

<table>
<thead>
<tr>
<th>GROUP</th>
<th>MIN.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>2.8</td>
<td>3.2</td>
<td>V</td>
</tr>
<tr>
<td>V2</td>
<td>3.2</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>V3</td>
<td>3.8</td>
<td>4.0</td>
<td>V</td>
</tr>
</tbody>
</table>

Note
- The optical and electrical specification table shows the parameter ranges, comprising only a few classification groups. In order to ensure availability, single groups for radiant intensity, wavelength, and forward voltage will not be orderable. Only one group for radiant intensity, wavelength, and forward voltage will be shipped in any one reel

MARKING EXAMPLE FOR SELECTION CODE ON LABEL

Selection code: R5-P3N1-V2
- R5 range: 18 mW to 20 mW
- P3N1 range: 365 nm to 367.5 nm
- V2 range: 3.2 V to 3.6 V
TYPICAL CHARACTERISTICS \(\text{T}_{\text{amb}} = 25 \, ^\circ\text{C}, \text{unless otherwise specified} \)

Fig. 1 - Maximum Forward Current vs. Solder Point Temperature

\(I_{\text{f, max.}} \) - Maximum Forward Current (mA)
\(T_{\text{sp}} \) - Solder Point Temperature (°C)

\(R_{\text{th JS}} = 53K/W \)

Fig. 2 - Relative Radiant Power vs. Forward Current

\(\Phi_{\text{e rel}} \) - Relative Radiant Power
\(I_{\text{f}} \) - Forward Current (mA)

Fig. 3 - Forward Current vs. Forward Voltage

\(I_{\text{f}} \) - Forward Current (mA)
\(V_{\text{f}} \) - Forward Voltage (V)

Fig. 4 - Relative Spectral Power vs. Wavelength

\(\omega \) - Angular Displacement

Fig. 5 - Relative Radiant Intensity vs. Angular Displacement

Fig. 6 - Relative Radiant Power vs. Ambient Temperature

\(I_{\text{f, rel}} \) - Relative Radiant Power
\(T_{\text{amb}} \) - Ambient Temperature (°C)
PACKAGE DIMENSIONS in millimeters

Technical drawings according to DIN specification.

Not indicated tolerances ±0.1

Recommended solder pad footprint

Drawing-No.: 6.541-5113.01-4
Issue: prel; 27.04.16

WIRING
TAPE AND REEL DIMENSIONS in millimeters

Leader and trailer tape:

Empty (160mm min.) Parts mounted Empty (400mm min.)

Direction of pulling out

Reel dimensions and tape

MOQ: 6000 pieces (4 reels each with 1500 pieces)
Soldering Profile

Fig. 8 - Vishay Lead (Pb)-free Reflow Soldering Profile
(according to J-STD-020C)

Bar Code Product Label
(example only)

- **A.** 2D bar code
- **B.** Vishay part number
- **C.** Quantity
- **D.** Selection code (bin): P_n, λ_p, and V_F group
- **E.** Code of manufacturing plant
- **F.** Termination plating finish
- **G.** Batch = date code: year / week / plant code
- **H.** Region code
- **I.** Internal serial number
- **J.** Sales location
- **K.** ESD symbol
- **L.** Lead (Pb)-free symbol
- **M.** RoHS symbol, halogen-free symbol
- **N.** Internal lot number

Dry Packing

The reel is packed in an anti-humidity bag to protect the devices from absorbing moisture during transportation and storage.

Final Packing

The sealed reel is packed into a cardboard box. A secondary cardboard box is used for shipping purposes.

Recommended Method of Storage

Dry box storage is recommended as soon as the aluminum bag has been opened to prevent moisture absorption. The following conditions should be observed, if dry boxes are not available:

- **Storage temperature** 10 °C to 30 °C
- **Storage humidity** ≤ 60 % RH max.

After more than 168 h under these conditions moisture content will be too high for reflow soldering.

In case of moisture absorption, the devices will recover to the former condition by drying under the following condition:

- **192 h at 40 °C + 5 °C / - 0 °C and < 5 % RH** (dry air / nitrogen) or
- **24 h at 60 °C + 5 °C and < 5 % RH** for all device containers or
- **24 h at 100 °C + 5 °C** not suitable for reel or tubes.

An EIA JEDEC® standard JESD22-A112 level 3 label is included on all dry bags.

ESD Precaution

Proper storage and handling procedures should be followed to prevent ESD damage to the devices especially when they are removed from the antistatic shielding bag. Electrostatic sensitive devices warning labels are on the packaging.

Vishay Semiconductors Standard Bar Code Labels

The Vishay Semiconductors standard bar code labels are printed at final packing areas. The labels are on each packing unit and contain Vishay Semiconductors specific data.
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.