UVC Emitting Diode in SMD Package

DESCRIPTION
VLMU60CL..-280-125 is a ceramic based standard power UVC LED with quartz lens for long life time. The package size is 6 mm x 6 mm x 1.6 mm and the radiant power up to 3.3 mW at 20 mA in a wavelength range of 270 nm to 290 nm.

PRODUCT GROUP AND PACKAGE DATA
• Product group: LED
• Package: SMD ceramic
• Product series: standard power UV LED
• Angle of half intensity: ± 62.5°
• Lead-finishing: Au

FEATURES
• Ceramic SMT package with quartz lens
• Dimension (L x W x H) in mm: 6 x 6 x 1.6
• Forward current: up to 40 mA
• Radiant power (typ.): 2.4 mW at 20 mA
• Leads / terminations finish: gold plated (Au)
• Reflow soldering method
• MSL 3 according to J-STD-020
• Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS
• Sterilization
• Medical application
• Sensing of gases, germs, DNA, ...

SAFETY ADVICES
Depending on the mode of operation, these devices emit highly concentrated non visible ultraviolet light which can be hazardous to the human eye. Products which incorporate these devices have to follow the safety precautions given in IEC 62471 “Photobiological Safety of Lamps and Lamp Systems”.

PARTS TABLE

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>COLOR</th>
<th>RADIANT POWER (mW)</th>
<th>at IF (mA)</th>
<th>WAVELENGTH (nm)</th>
<th>at IF (mA)</th>
<th>FORWARD VOLTAGE (V)</th>
<th>at IF (mA)</th>
<th>TECHNOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLMU60CL00-280-125</td>
<td>Ultraviolet</td>
<td>1.4</td>
<td>2.4</td>
<td>3.8</td>
<td>20</td>
<td>270</td>
<td>280</td>
<td>290</td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS (Tamb = 25 °C, unless otherwise specified)
VLMU60CL..-280-125

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC forward current</td>
<td></td>
<td>IF</td>
<td>40</td>
<td>mA</td>
</tr>
<tr>
<td>Power dissipation</td>
<td></td>
<td>PV</td>
<td>0.3</td>
<td>W</td>
</tr>
<tr>
<td>Junction temperature</td>
<td></td>
<td>Tj</td>
<td>+90</td>
<td>°C</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td></td>
<td>Tamb</td>
<td>-30 to +80</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td></td>
<td>Tstg</td>
<td>-40 to +100</td>
<td>°C</td>
</tr>
<tr>
<td>Solder temperature</td>
<td></td>
<td>Tsol</td>
<td>260</td>
<td>°C</td>
</tr>
</tbody>
</table>
OPTICAL AND ELECTRICAL CHARACTERISTICS \((T_{\text{amb}} = 25 \, ^{\circ}\text{C}, \text{unless otherwise specified}) \)

VLMU60CL00-280-125, ULTRAVIOLET

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITION</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>(I_F = 20 , \text{mA})</td>
<td>(V_F)</td>
<td>4.4</td>
<td>6.2</td>
<td>7.5</td>
<td>V</td>
</tr>
<tr>
<td>Radiant power</td>
<td>(I_F = 20 , \text{mA})</td>
<td>(\phi_e)</td>
<td>1.4</td>
<td>2.4</td>
<td>3.8</td>
<td>mW</td>
</tr>
<tr>
<td>Peak wavelength</td>
<td>(I_F = 20 , \text{mA})</td>
<td>(\lambda_p)</td>
<td>270</td>
<td>280</td>
<td>290</td>
<td>nm</td>
</tr>
<tr>
<td>Angle of half intensity</td>
<td>(I_F = 20 , \text{mA})</td>
<td>(\varphi)</td>
<td>-</td>
<td>(\pm 62.5)</td>
<td>-</td>
<td>deg</td>
</tr>
<tr>
<td>Thermal resistance junction to solder pin</td>
<td></td>
<td>(R_{\text{thJS}})</td>
<td>-</td>
<td>35</td>
<td>-</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Note
- Tolerances: \(\pm 11 \% \) for \(\phi_e \), \(\pm 0.1 \, \text{V} \) for \(V_F \), \(\pm 3 \, \text{nm} \) for \(\lambda_p \)

TYPICAL CHARACTERISTICS \((T_{\text{amb}} = 25 \, ^{\circ}\text{C}, \text{unless otherwise specified}) \)

![Fig. 1 - Maximum Forward Current vs. Ambient Temperature](image1)

![Fig. 3 - Forward Current vs. Forward Voltage](image3)

![Fig. 2 - Relative Radiant Power vs. Forward Current](image2)

![Fig. 4 - Relative Spectral Power vs. Wavelength](image4)
Fig. 5 - Relative Radiant Intensity vs. Angular Displacement

Fig. 6 - Relative Radiant Flux vs. Ambient Temperature

PACKAGE DIMENSIONS in millimeters

Technical drawings according to DIN specification.

Not indicated tolerances ± 0.2

Recommended solder pad opening
WIRING

![Wiring Diagram](Fig. 7 - Wiring Diagram)

TAPE AND REEL DIMENSIONS in millimeters

![Tape and Reel Dimensions](Reel Diagram)

- **Unreel direction**
- **Tape position coming out from reel**
- **500 pcs/reel**
- **Label posted here**

Technical drawings according to DIN specification

![Leader and Trailer Tape](Diagram)

- **Empty (160 mm min.)**
- **Parts mounted**
- **Direction of pulling out**
- **Empty (400 mm min.)**

![Part Dimensions](Diagram)

- **1.75 ± 0.1**
- **4 ± 0.1**
- **2 ± 0.1**
- **Ø 1.5 ± 0.1**
- **5.5 ± 0.1**
- **8 ± 0.1**
- **Ø 1.5 min.**
- **19 ± 0.1**
- **1.9 ± 0.1**
- **0.25 ± 0.1**
- **12 ± 0.2**
SOLDERING PROFILE

IR Reflow Soldering Profile for Lead (Pb)-free Soldering
Precondition acc. to JEDEC level 3

max. ramp up 3 °C/s
max. ramp down 6 °C/s

max. 120 s
max. 100 s

255 °C
240 °C
217 °C
245 °C
max. 260 °C

Fig. 8 - Vishay Lead (Pb)-free Reflow Soldering Profile (acc. to J-STD-020C)

BAR CODE PRODUCT LABEL (example only)

a. 2D barcode
b. Vishay part number
c. Quantity
d. SEL = selection code (binning)
e. Code of manufacturing plant
f. Batch = date code: year / week / plant code
g. Region code
h. SL = sales location
i. Terminations finishing
j. Lead (Pb)-free symbol
k. Halogen-free symbol
l. RoHS symbol

DRY PACKING

The reel is packed in an anti-humidity bag to protect the devices from absorbing moisture during transportation and storage.

FINAL PACKING

The sealed reel is packed into a cardboard box. A secondary cardboard box is used for shipping purposes.

RECOMMENDED METHOD OF STORAGE

Dry box storage is recommended as soon as the aluminum bag has been opened to prevent moisture absorption. The following conditions should be observed, if dry boxes are not available:

- Storage temperature 10 °C to 30 °C
- Storage humidity ≤ 60 % RH max.

After more than 168 h under these conditions moisture content will be too high for reflow soldering.

In case of moisture absorption, the devices will recover to the former condition by drying under the following condition:

192 h at 40 °C + 5 °C / - 0 °C and < 5 % RH (dry air / nitrogen) or
24 h at 60 °C + 5 °C and < 5 % RH for all device containers or
24 h at 100 °C + 5 °C not suitable for reel or tubes.

An EIA JEDEC® standard JESD22-A112 level 3 label is included on all dry bags.

Example of JESD22-A112 level 3 label

ESD PRECAUTION

Proper storage and handling procedures should be followed to prevent ESD damage to the devices especially when they are removed from the antistatic shielding bag. Electrostatic sensitive devices warning labels are on the packaging.

VISHAY SEMICONDUCTORS STANDARD BAR CODE LABELS

The Vishay Semiconductors standard bar code labels are printed at final packing areas. The labels are on each packing unit and contain Vishay Semiconductors specific data.
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.