D Series Power MOSFET

PRODUCT SUMMARY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Limit</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltage</td>
<td>VDS</td>
<td>450</td>
<td>V</td>
</tr>
<tr>
<td>On-Resistance at 25 °C (Ω)</td>
<td>RDS(on) max.</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Gate-Source Capacitance (nF)</td>
<td>Cgs</td>
<td>3</td>
<td>nF</td>
</tr>
<tr>
<td>Source-Drain Capacitance (nF)</td>
<td>Cgd</td>
<td>4</td>
<td>nF</td>
</tr>
<tr>
<td>Configuration</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FEATURES

- Optimal Design
 - Low Area Specific On-Resistance
 - Low Input Capacitance (Ciss)
 - Reduced Capacitive Switching Losses
 - High Body Diode Ruggedness
 - Avalanche Energy Rated (UIS)

- Optimal Efficiency and Operation
 - Low Cost
 - Simple Gate Drive Circuitry
 - Low Figure-of-Merit (FOM): Ron x Qg
 - Fast Switching

- Material categorization:
 - For definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Consumer Electronics
 - Displays (LCD or Plasma TV)
- Server and Telecom Power Supplies
 - SMPS
- Industrial
 - Welding
 - Induction Heating
 - Motor Drives
- Battery Chargers

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Package</th>
<th>Lead (Pb)-free</th>
<th>Lead (Pb)-free and Halogen-free</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO-220AB</td>
<td>SiHP6N40D-E3</td>
<td>SiHP6N40D-GE3</td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS

- **Drain-Source Voltage**
 - VDSV = 400 V
- **Gate-Source Voltage**
 - VGS = ±30 V
- **Continuous Drain Current (TJ = 150 °C)**
 - ID = 6 A
- **Pulsed Drain Current**
 - IDM = 13 A
- **Linear Derating Factor**
 - 0.8 W/°C
- **Single Pulse Avalanche Energy**
 - EA = 104 mJ
- **Maximum Power Dissipation**
 - PD = 104 W
- **Operating Junction and Storage Temperature Range**
 - TJ, Tstg = -55 to +150 °C
- **Drain-Source Voltage Slope**
 - Tj = 125 °C
 - dV/dt = 24 V/ns
- **Reverse Diode dv/dt**
 - 0.48 V/ns
- **Soldering Recommendations (Peak Temperature)**
 - for 10 s
 - 300 °C

Notes

- a. Repetitive rating; pulse width limited by maximum junction temperature.
- b. VDD = 50 V, starting TJ = 25 °C, L = 2.3 mH, Rg = 25 Ω, IS = 9.5 A.
- c. 1.6 mm from case.
- d. ISD = Ip, starting TJ = 25 °C.

For technical questions, contact: hvm@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HERIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
THERMAL RESISTANCE RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Junction-to-Ambient</td>
<td>R_{thJA}</td>
<td>-</td>
<td>62</td>
<td>°C/W</td>
</tr>
<tr>
<td>Maximum Junction-to-Case (Drain)</td>
<td>R_{thJC}</td>
<td>-</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>

SPECIFICATIONS (T_J = 25 °C, unless otherwise noted)

Static

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITIONS</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Breakdown Voltage</td>
<td>V_{DS}</td>
<td>V_GS = 0 V, I_D = 250 μA</td>
<td>400</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>VDS Temperature Coefficient</td>
<td>ΔV_{DS}/T_J</td>
<td>Reference to 25 °C, I_D = 250 μA</td>
<td>-</td>
<td>0.53</td>
<td>-</td>
<td>V/°C</td>
</tr>
<tr>
<td>Gate-Source Threshold Voltage (N)</td>
<td>V_{GS(th)}</td>
<td>V_{DS} = V_{GS}, I_D = 250 μA</td>
<td>3</td>
<td>-</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Source Leakage</td>
<td>I_{DSS}</td>
<td>V_{DS} = ± 30 V</td>
<td>-</td>
<td>-</td>
<td>± 100</td>
<td>nA</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>I_{DSS}</td>
<td>V_{DS} = 400 V, V_{GS} = 0 V</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>μA</td>
</tr>
<tr>
<td>Drain-Source On-State Resistance</td>
<td>R_{D(on)}</td>
<td>V_{GS} = 10 V, I_D = 3 A</td>
<td>-</td>
<td>0.85</td>
<td>1</td>
<td>Ω</td>
</tr>
<tr>
<td>Forward Transconductance</td>
<td>g_{fs}</td>
<td>V_{DS} = 50 V, I_D = 3 A</td>
<td>-</td>
<td>1.7</td>
<td>-</td>
<td>S</td>
</tr>
</tbody>
</table>

Dynamic

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITIONS</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Capacitance</td>
<td>C_{iss}</td>
<td>V_GS = 0 V,</td>
<td>-</td>
<td>311</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{DS} = 100 V, f = 1 MHz</td>
<td>-</td>
<td>38</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Reverse Transfer Capacitance</td>
<td>C_{rss}</td>
<td>V_{GS} = 0 V,</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{DS} = 0 V to 320 V</td>
<td>-</td>
<td>44</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Effective output capacitance, energy related</td>
<td>C_{o(er)}</td>
<td>V_{GS} = 0 V,</td>
<td>-</td>
<td>54</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{DS} = 0 V to 320 V</td>
<td>-</td>
<td>44</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Total Gate Charge</td>
<td>Q_{g}</td>
<td>V_{GS} = 10 V, I_D = 3 A, V_{DS} = 320 V</td>
<td>-</td>
<td>9</td>
<td>18</td>
<td>nC</td>
</tr>
<tr>
<td>Gate-Source Charge</td>
<td>Q_{gs}</td>
<td></td>
<td>-</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Gate-Drain Charge</td>
<td>Q_{gd}</td>
<td></td>
<td>-</td>
<td>4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Turn-On Delay Time</td>
<td>t_{d(on)}</td>
<td>V_{DD} = 400 V, I_D = 3 A, V_{GS} = 10 V, R_G = 9.1 Ω</td>
<td>-</td>
<td>12</td>
<td>24</td>
<td>ns</td>
</tr>
<tr>
<td>Rise Time</td>
<td>t_{r}</td>
<td></td>
<td>-</td>
<td>11</td>
<td>22</td>
<td>ns</td>
</tr>
<tr>
<td>Turn-Off Delay Time</td>
<td>t_{d(off)}</td>
<td>V_{GS} = 0 V,</td>
<td>-</td>
<td>14</td>
<td>28</td>
<td>ns</td>
</tr>
<tr>
<td>Fall Time</td>
<td>t_{f}</td>
<td></td>
<td>-</td>
<td>8</td>
<td>16</td>
<td>ns</td>
</tr>
<tr>
<td>Gate Input Resistance</td>
<td>R_{g}</td>
<td>f = 1 MHz, open drain</td>
<td>-</td>
<td>1.9</td>
<td>-</td>
<td>Ω</td>
</tr>
</tbody>
</table>

Drain-Source Body Diode Characteristics

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITIONS</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Source-Drain Diode Current</td>
<td>I_{S}</td>
<td>MOSFET symbol showing the integral reverse p-n junction diode</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed Diode Forward Current</td>
<td>I_{SM}</td>
<td></td>
<td>-</td>
<td>-</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Diode Forward Voltage</td>
<td>V_{BD}</td>
<td>T_J = 25 °C, I_S = 3 A, V_{GS} = 0 V</td>
<td>-</td>
<td>-</td>
<td>1.2</td>
<td>V</td>
</tr>
<tr>
<td>Reverse Recovery Time</td>
<td>t_{rr}</td>
<td>T_J = 25 °C, I_F = I_S = 3 A, dl/dt = 100 A/μs, V_R = 20 V</td>
<td>-</td>
<td>236</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>Reverse Recovery Charge</td>
<td>Q_{rr}</td>
<td></td>
<td>-</td>
<td>1.1</td>
<td>-</td>
<td>μC</td>
</tr>
<tr>
<td>Reverse Recovery Current</td>
<td>I_{RRM}</td>
<td></td>
<td>-</td>
<td>9</td>
<td>-</td>
<td>A</td>
</tr>
</tbody>
</table>

Notes

a. C_{iss} is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 % to 80 % V_{DS}.
b. C_{o(er)} is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 % to 80 % V_{DS}.
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Fig. 1 - Typical Output Characteristics

Fig. 2 - Typical Output Characteristics

Fig. 3 - Typical Transfer Characteristics

Fig. 4 - Normalized On-Resistance vs. Temperature

Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
Fig. 7 - Typical Source-Drain Diode Forward Voltage

![Graph showing typical source-drain diode forward voltage.](image)

- I_{SD}, Reverse Drain Current (A)
- V_{SD}, Source-Drain Voltage (V)
- $T_J = 150 \, ^\circ C$
- $T_J = 25 \, ^\circ C$
- $V_{GS} = 0 \, V$

Fig. 8 - Maximum Safe Operating Area

![Graph showing maximum safe operating area.](image)

- I_D, Drain Current (A)
- V_{DS}, Drain-to-Source Voltage (V)
- $T_J = 150 \, ^\circ C$ for limited operation
- $T_J = 25 \, ^\circ C$ for limited operation
- V_{GS} limited by $R_{DS(on)}$
- Operation in this area limited by $R_{DS(on)}$
- Single Pulse
- Single Pulse limited by $R_{DS(on)}$

* $V_{GS} > \text{minimum } V_{GS} \text{ at which } R_{DS(on)} \text{ is specified}

Fig. 9 - Maximum Drain Current vs. Case Temperature

![Graph showing maximum drain current vs. case temperature.](image)

- I_D, Drain Current (A)
- T_J, Case Temperature (°C)
- $V_{GS} = 0 \, V$

Fig. 10 - Temperature vs. Drain-to-Source Voltage

![Graph showing temperature vs. drain-to-source voltage.](image)

- V_{DS}, Drain-to-Source Voltage (V)
- T_J, Junction Temperature (°C)
- $T_J = 150 \, ^\circ C$
- $T_J = 25 \, ^\circ C$
- V_{DS} limited by $R_{DS(on)}$
- Single Pulse

Fig. 11 - Normalized Thermal Transient Impedance, Junction-to-Case

![Graph showing normalized thermal transient impedance.](image)

- Normalized Effective Transient Thermal Impedance
- Pulse Time (s)

For technical questions, contact: hvmsales@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Fig. 12 - Switching Time Test Circuit

Fig. 13 - Switching Time Waveforms

Fig. 14 - Unclamped Inductive Test Circuit

Fig. 15 - Unclamped Inductive Waveforms

Fig. 16 - Basic Gate Charge Waveform

Fig. 17 - Gate Charge Test Circuit
Peak Diode Recovery dV/dt Test Circuit

Circuit layout considerations:
- Low stray inductance
- Ground plane
- Low leakage inductance current transformer

Note:
- dV/dt controlled by R_g
- Driver same type as D.U.T.
- I_{SD} controlled by duty factor “D”
- D.U.T. - device under test

Driver gate drive

$D = \frac{P.W.}{Period}$

Reverse recovery current

$\frac{dI}{dt}$ controlled by R_g

Body diode forward current

$\frac{dV}{dt}$ controlled by duty factor “D”

D.U.T. waveform

Re-applied voltage

Inductor current

Note:
- $V_{GS} = 5$ V for logic level devices

Fig. 18 - For N-Channel
TO-220-1

Note

- \(M' = 0.052 \text{ inches to 0.064 inches} \) (dimension including protrusion), heatsink hole for HVM

<table>
<thead>
<tr>
<th>DIM.</th>
<th>MILLIMETERS</th>
<th>INCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4.24</td>
<td>1.67</td>
</tr>
<tr>
<td>b</td>
<td>0.69</td>
<td>0.027</td>
</tr>
<tr>
<td>c</td>
<td>0.36</td>
<td>0.014</td>
</tr>
<tr>
<td>D</td>
<td>14.33</td>
<td>0.564</td>
</tr>
<tr>
<td>E</td>
<td>9.96</td>
<td>0.392</td>
</tr>
<tr>
<td>e</td>
<td>2.41</td>
<td>0.095</td>
</tr>
<tr>
<td>e(1)</td>
<td>4.88</td>
<td>0.192</td>
</tr>
<tr>
<td>F</td>
<td>1.14</td>
<td>0.045</td>
</tr>
<tr>
<td>H(1)</td>
<td>6.10</td>
<td>0.240</td>
</tr>
<tr>
<td>J(1)</td>
<td>2.41</td>
<td>0.095</td>
</tr>
<tr>
<td>L</td>
<td>13.36</td>
<td>0.526</td>
</tr>
<tr>
<td>L(1)</td>
<td>3.33</td>
<td>0.131</td>
</tr>
<tr>
<td>Ø P</td>
<td>3.53</td>
<td>0.139</td>
</tr>
<tr>
<td>Q</td>
<td>2.54</td>
<td>0.100</td>
</tr>
</tbody>
</table>

ECN: X15-0364-Rev. C, 14-Dec-15
DWG: 6031

For technical questions, contact: hvm@vishay.com
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.