
COMPLIANT

HALOGEN FREE

E Series Power MOSFET

PRODUCT SUMMARY						
V _{DS} (V) at T _J max.	V _{DS} (V) at T _J max. 700					
R _{DS(on)} max. at 25 °C (Ω)	V _{GS} = 10 V 0.28					
Q _g max. (nC)	96					
Q _{gs} (nC)	11					
Q _{gd} (nC)	21					
Configuration	Single					

FEATURES

- Low figure-of-merit (FOM) Ron x Qa
- Low input capacitance (C_{iss})
- · Reduced switching and conduction losses
- Ultra low gate charge (Q_q)
- Avalanche energy rated (UIS)
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Server and telecom power supplies
- Switch mode power supplies (SMPS)
- Power factor correction power supplies (PFC)
- Lighting
 - High-intensity discharge (HID)
 - Fluorescent ballast lighting
- Industrial
 - Welding
 - Induction heating
 - Motor drives
 - Battery chargers
 - Renewable energy
 - Solar (PV inverters)

ORDERING INFORMATION	
Package	D ² PAK (TO-263)
Lead (Pb)-free and Halogen-free	SiHB15N65E-GE3

ABSOLUTE MAXIMUM RATINGS (T _C = 25 °C, unless otherwise noted)							
PARAMETER			SYMBOL	LIMIT	UNIT		
Drain-Source Voltage			V_{DS}	650	V		
Gate-Source Voltage			V_{GS}	± 30	 		
Continuous Proin Current (T. – 150 °C)	V _{GS} at 10 V	$T_{\rm C} = 25 ^{\circ}{\rm C}$ $T_{\rm C} = 100 ^{\circ}{\rm C}$	1	15			
Continuous Drain Current (T _J = 150 °C)	V _{GS} at 10 V	T _C = 100 °C	I _D	10	Α		
Pulsed Drain Current ^a			I _{DM}	38			
Linear Derating Factor				1.4	W/°C		
Single Pulse Avalanche Energy b			E _{AS}	286	mJ		
Maximum Power Dissipation			P_{D}	34	W		
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +150	°C		
Drain-Source Voltage Slope T _J = 125 °C			-15.47-11	37	1//20		
Reverse Diode dV/dt ^d			dV/dt	23	V/ns		
Soldering Recommendations (Peak Temperature) c for 10 s				300	°C		

Notes

- a. Repetitive rating; pulse width limited by maximum junction temperature.
- b. $V_{DD} = 50 \text{ V}$, starting $T_J = 25 \,^{\circ}\text{C}$, $L = 28.2 \,^{\circ}\text{mH}$, $R_q = 25 \,^{\circ}\Omega$, $I_{AS} = 4.5 \,^{\circ}\text{A}$.
- c. 1.6 mm from case.
- d. $I_{SD} \le I_D$, dl/dt = 100 A/ μ s, starting $T_J = 25$ °C.

THERMAL RESISTANCE RATINGS							
PARAMETER SYMBOL TYP. MAX. UNIT							
Maximum Junction-to-Ambient	R _{thJA}	-	62	°C/W			
Maximum Junction-to-Case (Drain)	R_{thJC}	-	0.7				

Vishay Siliconix

No. Symbol Test Conditions Min. Typ. Max. Unit Static	SPECIFICATIONS (T _J = 25 °C, u	nless otherwi	se noted)					
Drain-Source Breakdown Voltage VDS	PARAMETER	SYMBOL	TES	MIN.	TYP.	MAX.	UNIT	
Vos Temperature Coefficient	Static					·		
	Drain-Source Breakdown Voltage	V _{DS}	V _{GS} :	= 0 V, I _D = 250 μA	650	-	-	V
Cate-Source Leakage IGSS VGS = ± 20 V -	V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Referenc	e to 25 °C, I _D = 1 mA	-	0.75	-	V/°C
Cate-Source Leakage IGSS VGS = ± 20 V -	Gate-Source Threshold Voltage (N)	V _{GS(th)}	V _{DS} =	= V _{GS} , I _D = 250 μA	2	-	4	V
Vos = 30 V Vos = 50 V Vos = 10 V Vos = 50 V Vos = 10 V Vos Vos Vos = 10 V Vos		_		V _{GS} = ± 20 V	-	-	± 100	nA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-Source Leakage	I _{GSS}		V _{GS} = ± 30 V	-	-	± 1	μA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			V _{DS} =	= 650 V, V _{GS} = 0 V	-	-	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zero Gate Voltage Drain Current	I _{DSS}			-	-	10	μA
Promate Transconductance Gas VDS = 30 V, ID = 8 A - 5.6 - S	Drain-Source On-State Resistance	R _{DS(on)}			-	0.23	0.28	Ω
$ \begin{array}{ c c c c c c } \hline Input Capacitance & C_{iss} & V_{GS} = 0 \ V, \\ \hline Output Capacitance & C_{oss} & V_{DS} = 100 \ V, \\ \hline Reverse Transfer Capacitance & C_{rss} & T_{I} = 1 \ MHz & - & 4 & - & 4 \\ \hline Effective Output Capacitance, Energy Related ^{10} & V_{DS} = 0 \ V \ to 520 \ V, V_{GS} = 0 \ V \\ \hline Effective Output Capacitance, Time Related ^{10} & V_{DS} = 0 \ V \ to 520 \ V, V_{GS} = 0 \ V \\ \hline Effective Output Capacitance, Time Related ^{10} & V_{DS} = 0 \ V \ to 520 \ V, V_{GS} = 0 \ V \\ \hline Effective Output Capacitance, Time Related ^{10} & V_{DS} = 0 \ V \ to 520 \ V, V_{GS} = 0 \ V \\ \hline Effective Output Capacitance, Time Related ^{10} & V_{DS} = 0 \ V \ V_{DS} = 0 \ V \ V_{DS} = 0 \ V \ V_{DS} = 0 \ V \\ \hline Effective Output Capacitance, Energy Related ^{10} & V_{DS} = 0 \ V \ V_{DS} = 0 \ V \ V_{DS} = 0 \ V \ V_{DS} = 0 \ V \\ \hline Effective Output Capacitance, Energy Related ^{10} & V_{DS} = 0 \ V \ V_{DS} = 0 \ V_{D$	Forward Transconductance		V _{DS}	_s = 30 V, I _D = 8 A	-	5.6	-	S
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dynamic				1	1	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Capacitance	C _{iss}		Voc = 0 V	-	1640	-	
February Franker Capacitance Cress Cress Cress Coder Code	Output Capacitance				-	80	-	•
Felated a Post P	Reverse Transfer Capacitance	C _{rss}	1	f = 1 MHz	-	4	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		C _{o(er)}	V _{DS} = 0 V to 520 V, V _{GS} = 0 V		-	63	-	pF
		$C_{o(tr)}$			-	213	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Gate Charge	Qg			-	48	96	
	Gate-Source Charge	Q _{gs}	V _{GS} = 10 V	$I_D = 8 A, V_{DS} = 520 V$	-	11	-	nC
Rise Time t_r $V_{DD} = 520 \text{ V}, l_D = 8 \text{ A}, V_{GS} = 10 \text{ V}, R_g = 9.1 \Omega$ -24 48 -25 50	Gate-Drain Charge	Q_{gd}			-	21	-	
Turn-Off Delay Time $t_{d(off)}$ $V_{GS} = 10 \text{ V}, R_g = 9.1 \Omega$ $ 48$ 96 $ 25$ 50 $ 25$ 50 $ 25$ 50 $ 25$ 50 $ 25$ 50 $ 25$ 50 $ 25$ 50 $ 25$ 50 $ 25$ $ -$	Turn-On Delay Time	t _{d(on)}			-	18	36	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time	t _r	V _{DD}	= 520 V. In = 8 A.	-	24	48	ne
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-Off Delay Time	t _{d(off)}	V _{GS} :	= 10 V, $R_g = 9.1 \Omega$	-	48	96	115
	Fall Time	t _f			-	25	50	
Continuous Source-Drain Diode Current I_S MOSFET symbol showing the integral reverse $p-n$ junction diode I_{SM} Pulsed Diode Forward Current I_{SM} $I_{$	Gate Input Resistance	R_{g}	f = 1	MHz, open drain	-	0.8	-	Ω
Pulsed Diode Forward Current S	Drain-Source Body Diode Characteristic	s						
Pulsed Diode Forward Current I_{SM} p - n junction diode p - p	Continuous Source-Drain Diode Current	Is	showing the integral reverse		-	-	15	_
Reverse Recovery Time t_{rr} $T_J = 25 ^{\circ}\text{C}, I_F = I_S = 8 \text{A}, dI/dt = 100 \text{A/µs}, V_R = 400 \text{V}$	Pulsed Diode Forward Current	I _{SM}			-	-	38	A
Reverse Recovery Charge Q_{rr} $T_J = 25$ °C, $I_F = I_S = 8$ A, $dI/dt = 100$ A/ μ s, $V_R = 400$ V	Diode Forward Voltage	V_{SD}	T _J = 25 °C, I _S = 8 A, V _{GS} = 0 V		-	-	1.2	V
Reverse Recovery Charge Q_{rr} $T_J = 25$ °C, $I_F = I_S = 8$ A, $dI/dt = 100$ A/ μ s, $V_R = 400$ V -4.6 - μ C	Reverse Recovery Time	t _{rr}	T _J = 25 °C, I _F = I _S = 8 A,		-	325	-	ns
u//dt = 100 A/µs, V _R = 400 V	Reverse Recovery Charge	Q _{rr}			-	4.6	-	μC
	Reverse Recovery Current	I _{RRM}			_	20	-	A

Notes

a. $C_{oss(er)}$ is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 % to 80 % V_{DSS} .

b. $C_{oss(tr)}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 % to 80 % V_{DSS} .

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

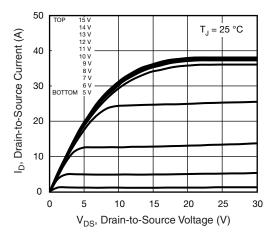


Fig. 1 - Typical Output Characteristics

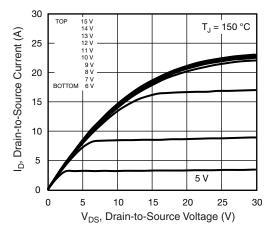


Fig. 2 - Typical Output Characteristics

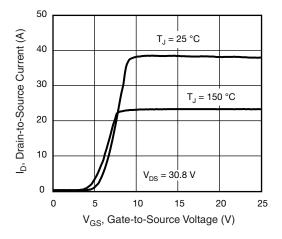


Fig. 3 - Typical Transfer Characteristics

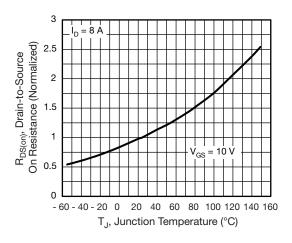


Fig. 4 - Normalized On-Resistance vs. Temperature

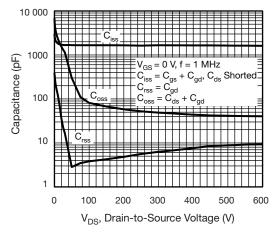


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

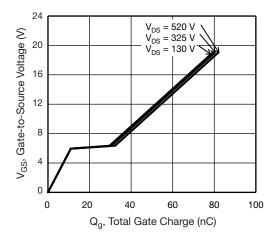


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

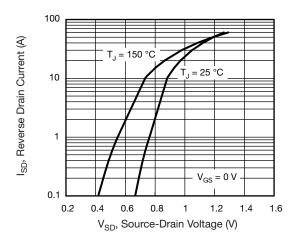


Fig. 7 - Typical Source-Drain Diode Forward Voltage

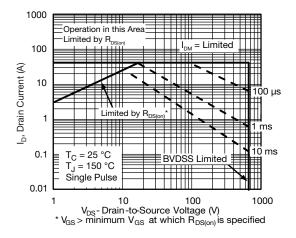


Fig. 8 - Maximum Safe Operating Area

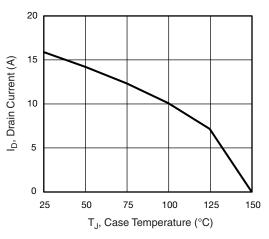


Fig. 9 - Maximum Drain Current vs. Case Temperature

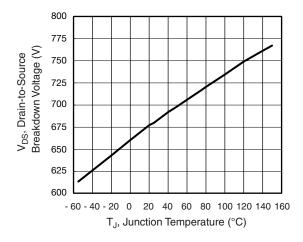


Fig. 10 - Temperature vs. Drain-to-Source Voltage

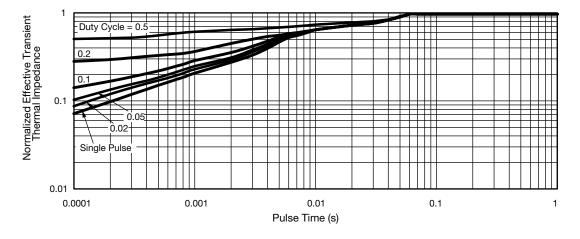


Fig. 11 - Normalized Thermal Transient Impedance, Junction-to-Case

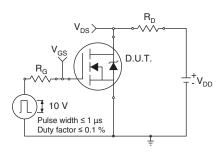


Fig. 12 - Switching Time Test Circuit

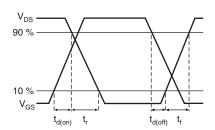


Fig. 13 - Switching Time Waveforms

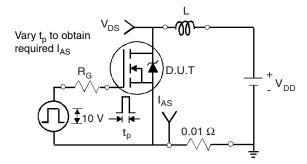


Fig. 14 - Unclamped Inductive Test Circuit

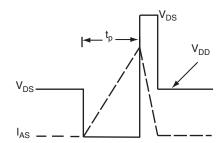


Fig. 15 - Unclamped Inductive Waveforms

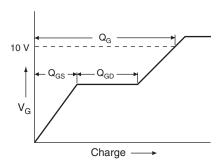


Fig. 16 - Basic Gate Charge Waveform

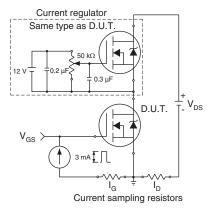
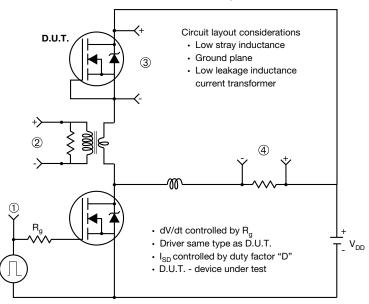
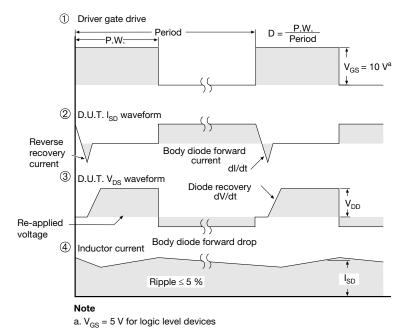
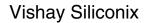
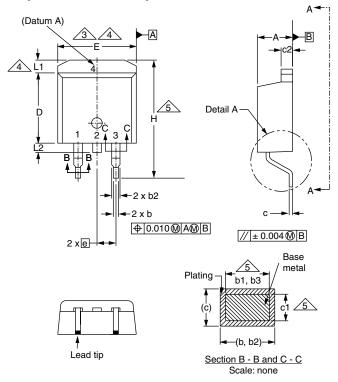
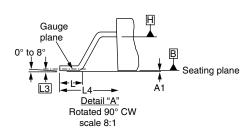



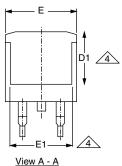
Fig. 17 - Gate Charge Test Circuit

Peak Diode Recovery dV/dt Test Circuit


Fig. 18 - For N-Channel


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91536.



TO-263AB (HIGH VOLTAGE)

]	+		D1	4
	-E1-	₩	<u> </u>	7

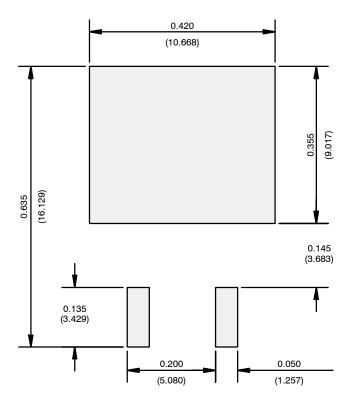
	MILLIN	METERS	INC	HES
DIM.	MIN. MAX.		MIN.	MAX.
Α	4.06	4.83	0.160	0.190
A1	0.00	0.25	0.000	0.010
b	0.51	0.99	0.020	0.039
b1	0.51	0.89	0.020	0.035
b2	1.14	1.78	0.045	0.070
b3	1.14	1.73	0.045	0.068
С	0.38	0.74	0.015	0.029
c1	0.38	0.58	0.015	0.023
c2	1.14	1.65	0.045	0.065
D	8.38	9.65	0.330	0.380

	MILLIN	METERS	INC	HES	
DIM.	MIN.	MIN. MAX.		MAX.	
D1	6.86	-	0.270	-	
E	9.65	10.67	0.380	0.420	
E1	6.22	-	0.245	i	
е	2.54	BSC	0.100 BSC		
Н	14.61	15.88	0.575	0.625	
L	1.78	2.79	0.070	0.110	
L1	-	1.65	ı	0.066	
L2	-	1.78	i	0.070	
L3	0.25 BSC		0.010	BSC	
L4	4.78	5.28	0.188	0.208	

DWG: 5970 Notes

- 1. Dimensioning and tolerancing per ASME Y14.5M-1994.
- 2. Dimensions are shown in millimeters (inches).

ECN: S-82110-Rev. A, 15-Sep-08


- 3. Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body at datum A.
- 4. Thermal PAD contour optional within dimension E, L1, D1 and E1.
- 5. Dimension b1 and c1 apply to base metal only.
- 6. Datum A and B to be determined at datum plane H.
- 7. Outline conforms to JEDEC outline to TO-263AB.

Document Number: 91364 www.vishay.com Revision: 15-Sep-08

RECOMMENDED MINIMUM PADS FOR D²PAK: 3-Lead

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.