VS-SD2000C..L Series

Vishay Semiconductors

Standard Recovery Diodes, (Hockey PUK Version), 2100 A

B-PUK (DO-200AB)

PRIMARY CHARACTERISTICS					
I _{F(AV)} 2100 A					
Package	B-PUK (DO-200AB)				
Circuit configuration Single					

FEATURES

- Wide current range
- High voltage ratings up to 1000 V
- · High surge current capabilities
- Diffused junction
- Hockey PUK version
- Case style B-PUK (DO-200AB)
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

TYPICAL APPLICATIONS

- Converters
- Power supplies
- High power drives
- · Auxiliary system supplies for traction applications

MAJOR RATINGS AND CHARACTERISTICS						
PARAMETER	TEST CONDITIONS	VALUES	UNITS			
1		2100	А			
IF(AV)	T _{hs}	55	°C			
1		3900	A			
IF(RMS)	T _{hs}	25	°C			
I _{FSM}	50 Hz	23 900	A			
	60 Hz	25 000				
l ² t	50 Hz	2857	kA ² s			
1-1	60 Hz	2608	KA ² S			
V _{RRM}	Range	400 to 1000	V			
TJ		-40 to +180	°C			

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS								
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} MAXIMUM AT T _J = 180 °C mA				
	04	400	500					
VS-SD2000CL	08	800	900	60				
	10	1000	1100					

1

www.vishay.com

Vishay Semiconductors

FORWARD CONDUCTION						
PARAMETER	SYMBOL	TEST CONDITIONS			VALUES	UNITS
Maximum average forward current	1	180° conduction, half sine wave			2100 (1040)	А
at heatsink temperature	I _{F(AV)}	Double side (s	single side) coole	ed	55 (85)	°C
Maximum RMS forward current	I _{F(RMS)}	25 °C heatsin	k temperature de	ouble side cooled	3900	
		t = 10 ms	No voltage		23 900	A kA²s
Maximum peak, one-cycle forward,		t = 8.3 ms	reapplied		25 000	
non-repetitive surge current	I _{FSM}	t = 10 ms	100 % V _{RRM}		20 100	
		t = 8.3 ms	reapplied	Sinusoidal half wave, initial T _J = T _J maximum	21 000	
Maximum I ² t for fusing	ximum l ² t for fusing $l^{2}t$ $l^{2}t$ $t = 10 \text{ ms}$ No voltage reapplied $t = 8.3 \text{ ms}$ reapplied $t = 10 \text{ ms}$ 100 % V _{RBM} reapplied reapplied $t = 8.3 \text{ ms}$ reapplied	t = 10 ms	Ŭ		2857	
		t = 8.3 ms			2608	
		t = 10 ms	100 % V _{BBM}		2020	
				1844	ļ	
Maximum I ² √t for fusing	l²√t	t = 0.1 to 10 ms, no voltage reapplied			28 570	kA²√s
Low level value of threshold voltage	V _{F(TO)1}	(16.7 % x π x	$I_{F(AV)} < I < \pi \times I_{F(AV)}$	0.74	V	
High level value of threshold voltage	V _{F(TO)2}	$(I > \pi \times I_{F(AV)}), T_J = T_J maximum$			0.86	v
Low level value of forward slope resistance	r _{f1}	(16.7 % x π x I _{F(AV)} < I < π x I _{F(AV)}), T _J = T _J maximum			0.13	mW
High level value of forward slope resistance	r _{f2}	$(I > \pi \times I_{F(AV)}),$	T _J = T _J maximur	n	0.12	11174
Maximum forward voltage drop	V _{FM}	I _{pk} = 6000 A, T	J = TJ maximum	, t _p = 10 ms sinusoidal wave	1.55	V

THERMAL AND MECHANICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum junction operating temperature range	TJ		-40 to +180	°C	
Maximum storage temperature range	T _{Stg}		-55 to +200		
Maximum thermal resistance,	D	DC operation single side cooled	0.073	K/W	
junction to heatsink	R _{thJ-hs}	DC operation double side cooled	0.031	r∨ W	
Mounting force, ± 10 %			14 700 (1500)	N (kg)	
Approximate weight			255	g	
Case style		See dimensions - link at the end of datasheet B-PUK (DO-200AB		-200AB)	

CONDUCTION ANGLE	SINUSOIDAL C	ONDUCTION	TEST CONDITIONS	UNITS				
CONDUCTION ANGLE	SINGLE SIDE	DOUBLE SIDE	SINGLE SIDE	DOUBLE SIDE	TEST CONDITIONS	UNITS		
180°	0.009	0.009	0.006	0.006				
120°	0.011	0.011	0.011	0.011		K/W		
90°	0.014	0.014	0.015	0.015	$T_J = T_J maximum$			
60°	0.020	0.020	0.021	0.021				
30°	0.036	0.036	0.036	0.036				

Note

• The table above shows the increment of thermal resistance R_{thJ-hs} when devices operate at different conduction angles than DC

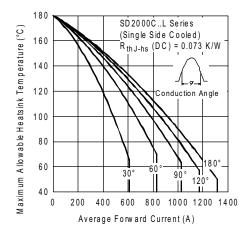


Fig. 1 - Current Ratings Characteristics

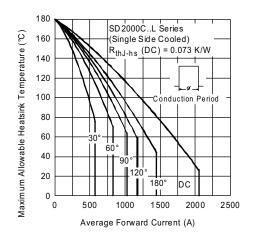


Fig. 2 - Current Ratings Characteristics

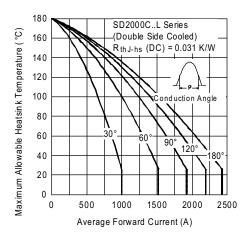


Fig. 3 - Current Ratings Characteristics

Vishay Semiconductors

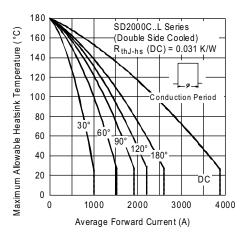


Fig. 4 - Current Ratings Characteristics

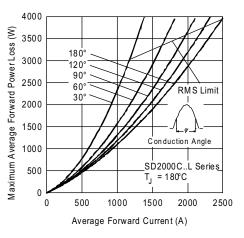


Fig. 5 - Forward Power Loss Characteristics

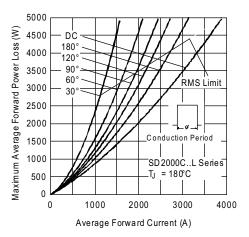
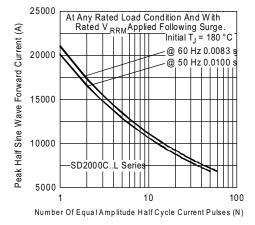
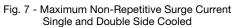


Fig. 6 - Forward Power Loss Characteristics


Revision: 11-Jan-18


3

Document Number: 93540

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors

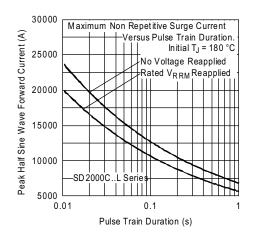


Fig. 8 - Maximum Non-Repetitive Surge Current Single and Double Side Cooled

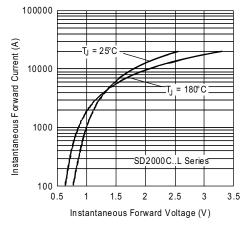


Fig. 9 - Forward Voltage Drop Characteristics

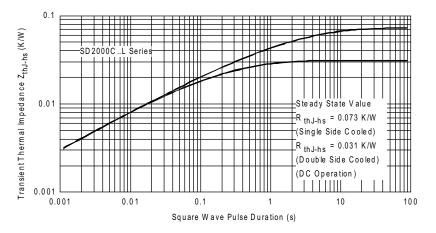


Fig. 10 - Thermal Impedance ZthJ-hs Characteristics

 Revision: 11-Jan-18
 4
 Document Number: 93540

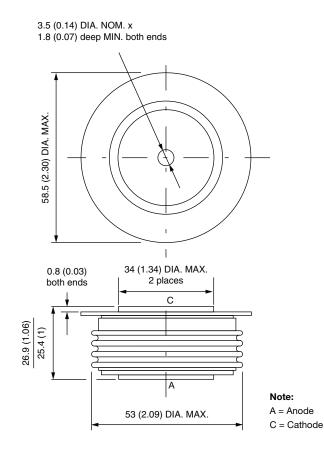
 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
 DiodesEurope@vishay.com

 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Semiconductors

Device code	VS-	SD	200	0	с	10	L
	1	2	3	4	5	6	7
	1 -		-	niconduc	ctors pro	oduct	
	2 -	Dio		art numt	ber		
	4 · 5 ·		standar ceramio	d recove c PUK	ery		
	6 - 7 -		•	le x 100 se B-PU			•

LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95246			



B-PUK (DO-200AB)

DIMENSIONS in millimeters (inches)

Quote between upper and lower pole pieces has to be considered after application of mounting force (see Thermal and Mechanical Specifications)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2025 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2025

1