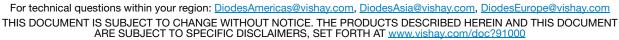
VS-401CNQ...PbF Series

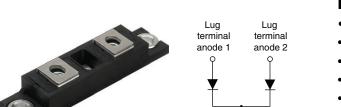
Vishay Semiconductors

- 175 °C T_J operation
- · Center tap module
- · Low forward voltage drop
- · High frequency operation
- · Guard ring for enhanced ruggedness and long term reliability
- UL approved file E222165
- Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DESCRIPTION / APPLICATIONS


The VS-401CNQ... center tap Schottky rectifier module series has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 175 °C junction temperature. Typical applications are in high current switching power supplies, converters, freewheeling diodes, welding and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS SYMBOL UNITS **CHARACTERISTICS** VALUES 400 А I_{F(AV)} Rectangular waveform v V_{RRM} Range 40/45 $t_p = 5 \ \mu s \ sine$ 25 000 А I_{FSM} V_{F} 200 A_{pk}, T_J = 125 °C (per leg) 0.56 v TJ -55 to +175 °C Range


VOLTAGE RATINGS				
PARAMETER	SYMBOL	VS-401CNQ040PbF	VS-401CNQ045PbF	UNITS
Maximum DC reverse voltage	V _R	40	45	V
Maximum working peak reverse voltage	V _{RWM}	40	43	v

ABSOLUTE MAXIMUM RATINGS						
PARAMETER		SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum average forward per leg			50 % duty cycle at T_{C} = 147 °C, rectangular waveform		200	
current (fig. 5) per device	per device	IF(AV)	50% duty cycle at $1c = 147$ C, rectangular wavelonn		400	- A
Maximum peak one cycle non-repetitive surge current per leg (fig. 7)		I _{FSM}	5 μs sine or 3 μs rect. pulse	Following any rated load condition and with rated	25 000	
			10 ms sine or 6 ms rect. pulse	V _{RRM} applied	3450	
Non-repetitive avalanche ene	rgy per leg	E _{AS}	$T_J = 25 \text{ °C}, I_{AS} = 24 \text{ A}, L = 1 \text{ mH}$		270	mJ
Repetitive avalanche current per leg		I _{AR}	Current decaying linearly to zero in 1 μ s Frequency limited by T _J maximum V _A = 1.5 x V _R typical		40	А

Revision: 11-May-17

1

Base common

cathode

400 A

40 V, 45 V

TO-244

Two diodes common cathode

PRIMARY CHARACTERISTICS

I_{F(AV)}

 V_R

Package

Circuit configuration

RoHS

COMPLIANT

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum forward voltage drop per leg See fig. 1	V _{FM} ⁽¹⁾	200 A	T ₁ = 25 °C	0.67	V
		400 A	1j=25 0	0.78	
		200 A	$T_{i} = T_{i}$ maximum	0.56	
		400 A	ij = ij maximum	0.69	
Maximum reverse leakage current per leg See fig. 2	I _{RM} ⁽¹⁾	T _J = 25 °C	$V_{\rm B}$ = Rated $V_{\rm B}$	20	- mA
		T _J = 125 °C	VR = haleu VR	180	
Maximum junction capacitance per leg	C _T	$V_R = 5 V_{DC}$ (test signal range 100 kHz to 1 MHz) 25 °C		10 300	pF
Typical series inductance per leg	L _S	From top of terminal hole to mounting plane		5.0	nH
Maximum voltage rate of change	dV/dt	Rated V _R		10 000	V/µs

Note

 $^{(1)}\,$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS	
Maximum junction and storage temperature range	T _J , T _{Stg}	-55	-	175	°C	
Thermal resistance, junction to case per leg	Р	-	-	0.19	°C/W	
Thermal resistance, junction to case per module	– R _{thJC}	-	-	0.095		
Thermal resistance, case to heatsink	R _{thCS}	-	0.10	-		
Waisht		-	68	-	g	
Weight		-	2.4	-	oz.	
Mounting torque		35.4 (4)		53.1 (6)		
Mounting torque center hole		30 (3.4)		40 (4.6)	lbf · in (N · m)	
Terminal torque		30 (3.4)	-	44.2 (5)	(
Vertical pull		-	-	80	lbf · in	
2" lever pull		-	-	35		

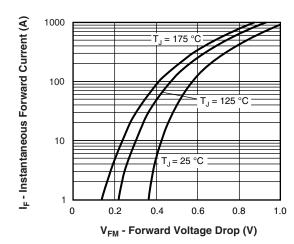


Fig. 1 - Maximum Forward Voltage Drop Characteristics

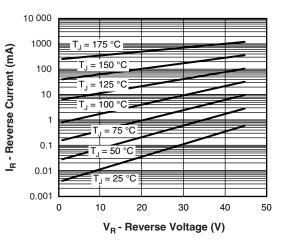


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

Revision: 11-May-17

2

Document Number: 94205

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

VS-401CNQ...PbF Series

Vishay Semiconductors

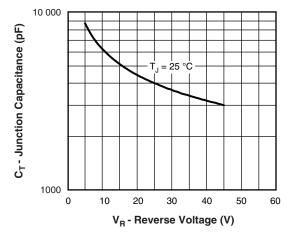


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

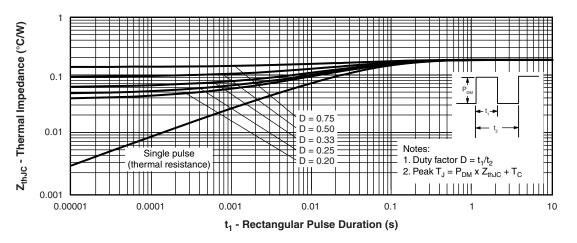


Fig. 4 - Maximum Thermal Impedance ZthJC Characteristics (Per Leg)

Revision: 11-May-17

3

Document Number: 94205

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

VS-401CNQ...PbF Series

Vishay Semiconductors

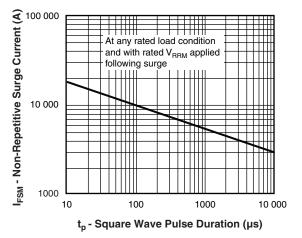
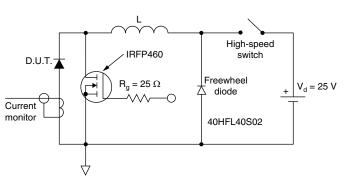
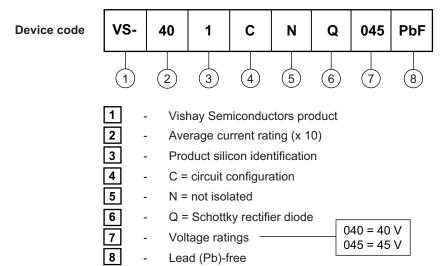



Fig. 7 - Maximum Non-Repetitive Surge Current


Fig. 8 - Unclamped Inductive Test Circuit

Note

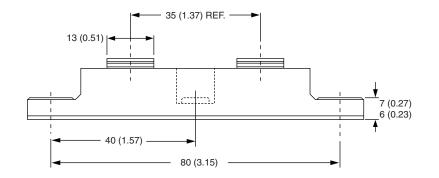
⁽¹⁾ Formula used: T_C = T_J - (Pd + Pd_{REV}) x R_{thJC}; Pd = forward power loss = I_{F(AV)} x V_{FM} at (I_{F(AV)}/D) (see fig. 6); Pd_{REV} = inverse power loss = V_{R1} x I_R (1 - D); I_R at V_{R1} = 80 % rated V_R

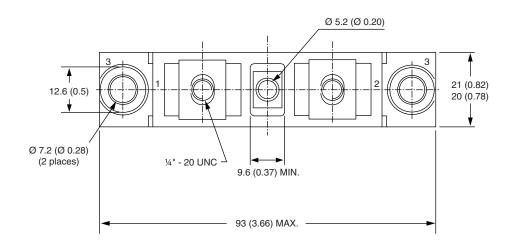
ORDERING INFORMATION TABLE

www.vishay.com

LINKS TO RELATED DOCUMENTS					
Dimensions www.vishay.com/doc?95021					
Revision: 11-May-17	4	Document Number: 94205			
For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com					
THE RECEIPTED OUR FOR TO OUR NOT WITHOUT NOTICE. THE RECORDER DESCRIPTED HEREIN AND THE RECOURTED					

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000




Vishay Semiconductors

TO-244

DIMENSIONS in millimeters (inches)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2025 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2025

1