

VS-VSKL300/08PbF

Vishay Semiconductors

INT-A-PAK Power Module Thyristor/Diode, 300 A

www.vishay.com

INT-A-PAK

PRIMARY CHARACTERISTICS				
I _{T(AV)}	300 A			
Type	Modules -thyristor, standard			
Package	INT-A-PAK			

FEATURES

- · Electrically isolated base plate
- 3000 V_{RMS} isolating voltage
- Industrial standard package
- Simplified mechanical designs, rapid assembly
- High surge capability
- Large creepage distances
- UL approved file E78996
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- · Battery chargers
- Welders
- Power converters
- Alternators

MAJOR RATINGS AND CHARACTERISTICS							
SYMBOL	CHARACTERISTICS	VALUES	UNITS				
V _{DRM} /V _{RRM}		800	V				
I _{T(AV)}	53 °C	300	Α				
I _{T(RMS)}		116	Α				
	50 Hz	6500	A				
I _{TSM}	60 Hz	6900	A				
I ² t	50 Hz	214	kA ² s				
1-1	60 Hz	195	KA-S				
l ² √t		2140	kA ² √s				
T _J	Range	-40 to +140	°C				

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS								
TYPE NUMBER	V _{RRM} /V _{DRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} /V _{DSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} /I _{DRM} AT 125 °C mA					
VS-VSKL300/08PbF	800	900	50					

End of Life December 2024 - Contact Vishay for Alternative Solutions

VS-VSKL300/08PbF

Vishay Semiconductors

ON-STATE CONDUCTION PARAMETER	SYMBOL		TEST CONDITION	ONS	VALUES	UNITS	
Maximum average on-state current	01202					A	
at case temperature	$I_{T(AV)}$	180° conducti	on half sine wave		300 53	°C	
Maximum RMS on-state current	I _{T(RMS)}	As AC switch			116		
	,	t = 10 ms	No voltage		6600		
Maximum peak, one-cycle		t = 8.3 ms	reapplied		6900	Α	
on-state, non-repetitive surge current	I _{TSM}	t = 10 ms	100 % V _{RRM}		5500	1	
3		t = 8.3 ms	reapplied	Sine half wave, 5	5800		
		t = 10 ms	No voltage	initial $T_J = T_J$ maximum	214	- kA ² s	
Maximum I ² t for fusing	I ² t	t = 8.3 ms	reapplied		195		
	1-1	t = 10 ms	100 % V _{BBM}		151		
		t = 8.3 ms	reapplied		138		
Maximum I ² √t for fusing	I ² √t	t = 0.1 ms to 1	t = 0.1 ms to 10 ms, no voltage reapplied			kA²√s	
Low level value of threshold voltage	V _{T(TO)1}	(16.7 % x π x	$I_{T(AV)} < I < \pi \times I_{T(AV)},$	T _J maximum	0.796	V	
High level value of threshold voltage	V _{T(TO)2}	$(I > \pi \times I_{T(AV)}),$	$(I > \pi \times I_{T(AV)})$, T_J maximum]	
Low level value on-state slope resistance	r _{t1}	(16.7 % x π x $I_{T(AV)} < I < \pi$ x $I_{T(AV)}$), T_J maximum			0.972	0	
High level value on-state slope resistance	r _{t2}	$(I > \pi \times I_{T(AV)})$, T_J maximum			0.88	mΩ	
Maximum on atata valtaga deen	V_{TM}	T 05 %C 1	500 A	SCR	1.35		
Maximum on-state voltage drop	V _{EM}	$T_J = 25 ^{\circ}\text{C}, I_{pk} = 500 \text{A}$		DIODE	1.20	V	

SWITCHING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Typical delay time	t _d	Gate current 1 A, $dl_g/dt = 1 A/\mu s$ $V_d = 0.67 \% V_{DRM}$, $T_J = 25 °C$	1.0	
Typical turn-off time	t _q	I_{TM} = 300 A, T_J = T_J maximum, dl/dt = 20 A/μs, V_R = 50 V dV/dt = 20 V/μs, Gate 0 V 100 Ω , t_p = 500 μs	100	μs

BLOCKING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum critical rate of rise of off-state voltage	dV/dt	$T_J = T_J$ maximum linear to 67 % rated V_{DRM}	500	V/µs
Maximum peak reverse and off-state leakage current	I _{DRM} , I _{RRM}	$T_J = T_J$ maximum, rated V_{DRM}/V_{RRM} applied	50	mA
RMS insulation voltage	V _{INS}	50 Hz, circuit to base, all terminal shorted, t = 1 s	3000	V

www.vishay.com

VS-VSKL300/08PbF

Vishay Semiconductors

TRIGGERING					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum peak gate power	P _{GM}	$T_J = T_J$ maximum, $t_p \le 5$ ms	10.0	W	
Maximum average gate power	P _{G(AV)}	$T_J = T_J$ maximum, $f = 50$ Hz, $d\% = 50$	2.0] vv	
Maximum peak positive gate current	I _{GM}	$T_J = T_J$ maximum, $t_p \le 5$ ms	3.0	Α	
Maximum required DC gate voltage to trigger	V_{GT}	T 05.00	3	V	
Maximum required DC gate current to trigger	I _{GT}	$T_J = 25 ^{\circ}\text{C}$ Anode supply: 12 V resistive load	200	mA	
Maximum holding current	I _H	7 Trodo cappiy. 12 v Toolotivo load	600	IIIA	
Maximum peak positive gate voltage	+V _{GM}	T _J = T _J maximum, t _p ≤ 5 ms	20	V	
Maximum peak negative gate voltage	-V _{GM}	$ij = ij \text{ maximum}, i_p \le 3 \text{ ms}$	5.0	V	
DC gate voltage not to trigger	V_{GD}	$T_J = T_J$ maximum	0.30	V	
DC gate current not to trigger	I _{GD}	Maximum gate current/voltage not to trigger is the maximum value which will not trigger any unit with rated V _{DRM} anode to cathode applied	10	mA	
Maximum non-repetitive rate of rise of turned-on current	dl/dt	Gate drive 20 V, 20 Ω , $t_r \le 1~\mu s$ $T_J = T_J$ maximum, anode voltage $\le 80~\%$ V_{DRM}	1000	A/µs	

THERMAL AND MECHANICAL SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Maximum junction operating temperature range	TJ		-40 to +140	°C			
Maximum storage temperature range	T _{Stg}		-40 to +150				
Maximum thermal resistance, junction to case per junction	R _{thJC}	DC operation	0.19	K/W			
Maximum thermal resistance, case to heatsink per module	R _{thCS}	Mounting surface smooth, flat and greased	0.035	N/VV			
Mounting torque + 10 %	k	A mounting compound is recommended and	4 to 6	Nima			
Mounting torque ± 10 % busbar to IAF	•	the torque should be rechecked after a period	4 10 6	Nm			
Approximate weight		of 3 hours to allow for the spread of the	500	g			
Approximate weight		compound. Lubricated threads.	17.8	OZ.			
Case style			INT-A-F	AK			

△R CONDUCTION PER JUNCTION											
DEVICES		SINUSOIDAL CONDUCTION AT T _J MAXIMUM			RECTANGULAR CONDUCTION AT T _J MAXIMUM				UNITS		
	180°	120°	90°	60°	30°	180°	120°	90°	60°	30°	
VSKL300	0.019	0.022	0.028	0.041	0.068	0.013	0.023	0.031	0.043	0.069	K/W

Note

Table shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

www.vishay.com

Vishay Semiconductors

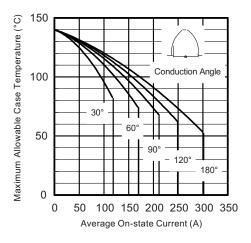


Fig. 1 - Current Ratings Characteristics

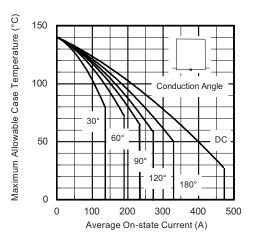


Fig. 2 - Current Ratings Characteristics

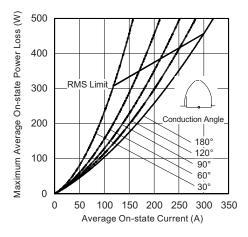


Fig. 3 - On-State Power Loss Characteristics

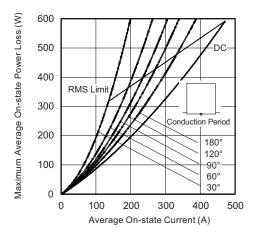


Fig. 4 - On-State Power Loss Characteristics

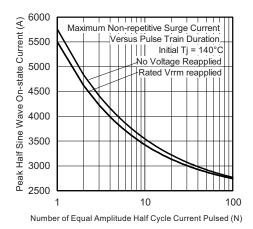


Fig. 5 - Maximum Non-Repetitive Surge Current

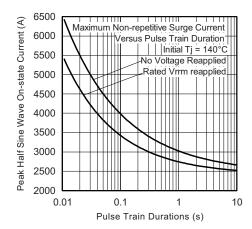


Fig. 6 - Maximum Non-Repetitive Surge Current

VS-VSKL300/08PbF

Vishay Semiconductors

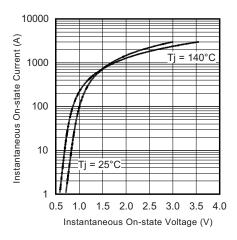


Fig. 7 - On-State Voltage Drop Characteristics (SCR)

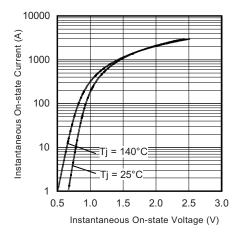


Fig. 8 - On-State Voltage Drop Characteristics (Diode)

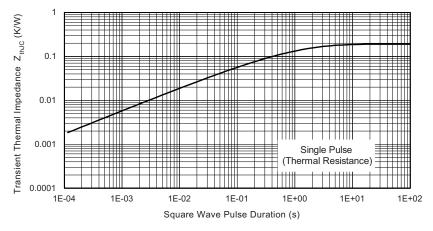
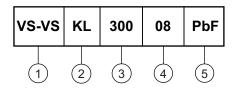



Fig. 9 - Thermal Impedance Z_{thJC} Characteristics

ORDERING INFORMATION TABLE

Device code

Vishay Semiconductors product

2 - Circuit configuration

Current rating (300 = 300 A)

Voltage rating (08 = 800 V)

5 - PbF = Lead (Pb)-free

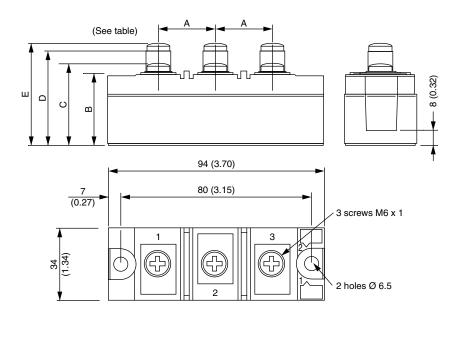
End of Life December 2024 - Contact Vishay for Alternative Solutions

VS-VSKL300/08PbF

www.vishay.com

Vishay Semiconductors

CIRCUIT CONFIGURATION						
CIRCUIT DESCRIPTION	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING				
SCR/diode doubler circuit, negative control	L	1 0 ~ 2 0+ 1 0 ~ 2 0+ 1 0 ~ 1 0				


LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95010			

Vishay Semiconductors

INT-A-PAK Diode

DIMENSIONS in millimeters (inches)

Α	В	С	D	E
23 (0.91)	30 (1.18)	36 (1.42)	-	-

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.