Vishay Semiconductors

AAP Gen 7 (TO-240AA) Power Modules Standard Diodes, 100 A

PRIMARY CHARACTERISTICS						
I _{F(AV)}	100 A					
Type	Modules - diode, high voltage					
Package	AAP Gen 7 (TO-240AA)					
Circuit configuration	Two diodes doubler circuit, two diodes common cathode, two diodes common anode, single diode					

MECHANICAL DESCRIPTION

The AAP Gen 7 (TO-240AA), new generation of ADD-A-PAK module, combines the excellent thermal performances obtained by the usage of exposed direct bonded copper substrate, with advanced compact simple package solution and simplified internal structure with minimized number of interfaces.

FEATURES

- High voltage
- · Industrial standard package
- UL approved file E78996

- · Low thermal resistance
- · Designed and qualified for industrial level
- · Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

BENEFITS

- · Excellent thermal performances obtained by the usage of exposed direct bonded copper substrate
- Up to 1600 V
- High surge capability
- · Easy mounting on heatsink

ELECTRICAL DESCRIPTION

These modules are intended for general purpose high voltage applications such as high voltage regulated power supplies, lighting circuits, temperature and motor speed control circuits, UPS and battery charger.

MAJOR RATINGS AND CHARACTERISTICS						
SYMBOL	CHARACTERISTICS	VALUES	UNITS			
		100	A			
I _{F(AV)}	T _C	112	°C			
I _{F(RMS)}		157				
I _{FSM}	50 Hz	2020	Α			
	60 Hz	2115				
l ² t	50 Hz	20.41	1.42-			
60 Hz	60 Hz	18.63	kA ² s			
I ² √t		204.1	kA²√s			
V _{RRM}	Range	400 to 1600	V			
T _{Stg}		-40 to +150	°C			
TJ		-40 to +150	°C			

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS								
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} MAXIMUM AT T _J = 150 °C mA				
	04	400	500					
	06	600	700					
	08	800	900					
VS-VSK.91	10	1000	1100	10				
	12	1200	1300					
	14	1400	1500					
	16	1600	1700					

FORWARD CONDUCTION						
PARAMETER	SYMBOL	TEST CONDITIONS			VALUES	UNITS
Maximum average forward current	I=	180° condu	ction, half sine	wave	100	Α
at case temperature	I _{F(AV)}	160 Condu	Clion, nan sine	wave	112	°C
Maximum RMS forward current	I _{F(RMS)}				157	
		t = 10 ms	No voltage		2020	
Maximum peak, one-cycle forward,		t = 8.3 ms	reapplied		2115	Α
non-repetitive surge current	I _{FSM}	t = 10 ms	100 % V _{RRM}		1700	
		t = 8.3 ms	reapplied	Sinusoidal half wave,	1780	
	l ² t	t = 10 ms	No voltage	initial $T_J = T_J$ maximum	20.41	kA ² s
Marriagues 12t for fusions		t = 8.3 ms	reapplied		18.63	
Maximum I ² t for fusing		t = 10 ms	100 % V _{RRM}		14.44	
		t = 8.3 ms	reapplied		13.18	
Maximum I ² √t for fusing	I ² √t	t = 0.1 ms t	o 10 ms, no vol	tage reapplied	204.1	kA²√s
Low level value of threshold voltage	V _{F(TO)1}	(16.7 % x π	$x I_{F(AV)} < I < \pi x$	$I_{F(AV)}$, $T_J = T_J$ maximum	0.76	V
High level value of threshold voltage	V _{F(TO)2}	$(I > \pi \times I_{F(AV)}), T_J = T_J \text{ maximum}$			0.89	v
Low level value of forward slope resistance	r _{f1}	(16.7 % x π x $I_{F(AV)}$ < I < π x $I_{F(AV)}$), $T_J = T_J$ maximum			2.4	mΩ
High level value of forward slope resistance	r _{f2}	$(I > \pi \times I_{F(AV)}), T_J = T_J \text{ maximum}$			2.05	11152
Maximum forward voltage drop	V_{FM}	$I_{FM} = \pi \times I_{F(x)}$	$AV)$, $T_J = 25 \circ C$,	t _p = 400 μs square wave	1.55	V

BLOCKING							
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Maximum peak reverse leakage current	I _{RRM}	T _J = 150 °C	10	mA			
Maximum RMS insulation voltage	V _{INS}	50 Hz	3000 (1 min) 3600 (1 s)	V			

Vishay Semiconductors

THERMAL AND MECHANICAL SPECIFICATIONS							
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Junction and storage temper	ature range	T _J , T _{Stg}		-40 to +150	°C		
Maximum internal thermal resistance, junction to case per leg		R _{thJC}	DC operation	0.22	°C/W		
Typical thermal resistance, case to heatsink per module		R _{thCS}	Mounting surface flat, smooth, and greased	0.1			
Mounting torque ± 10 % busbar			A mounting compound is recommended and the	4	Niss		
			torque should be rechecked after a period of 3 hours to allow for the spread of the compound.	3	Nm		
Approximate weight				75	g		
				2.7	OZ.		
Case style			JEDEC®	AAP Gen 7	(TO-240AA)		

AR CONDUCTION PER JUNCTION											
DEVICES	8	SINE HALF	WAVE CO	NDUCTION	7	RECTANGULAR WAVE CONDUCTION				UNITS	
DEVICES	180°	120°	90°	60°	30°	180°	120°	90°	60°	30°	UNITS
VSK.91	0.057	0.068	0.087	0.12	0.177	0.045	0.073	0.093	0.123	0.178	°C/W

Note

• Table shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

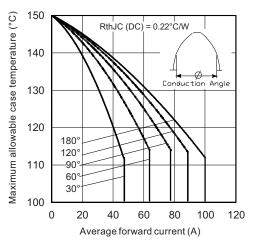


Fig. 1 - Current Ratings Characteristics

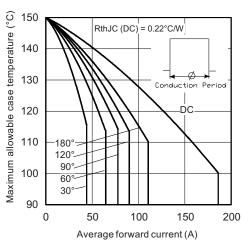


Fig. 2 - Current Ratings Characteristics

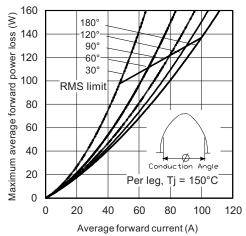


Fig. 3 - Forward Power Loss Characteristics

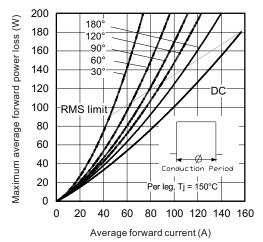
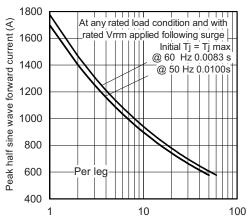



Fig. 4 - On-State Power Loss Characteristics

Number of equal amplitude half cycle current pulses (N)

Fig. 5 - Maximum Non-Repetitive Surge Current

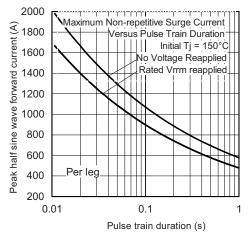


Fig. 6 - Maximum Non-Repetitive Surge Current

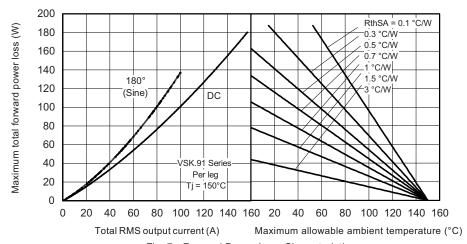


Fig. 7 - Forward Power Loss Characteristics

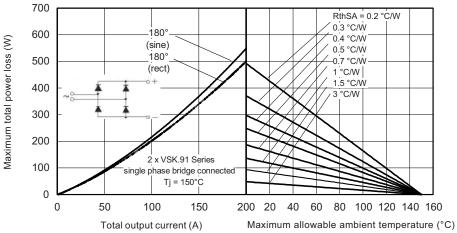


Fig. 8 - Forward Power Loss Characteristics

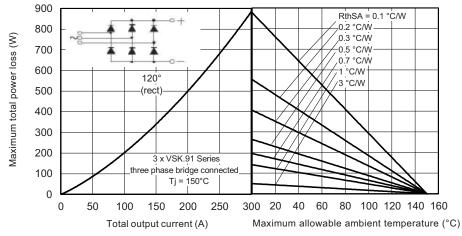


Fig. 9 - Forward Power Loss Characteristics

www.vishay.com

Vishay Semiconductors

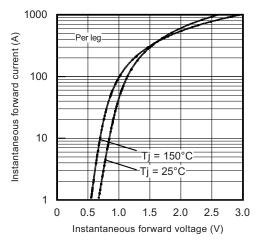


Fig. 10 - Forward Voltage Characteristics

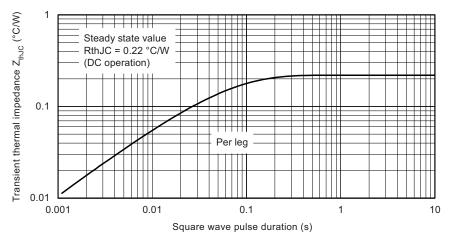
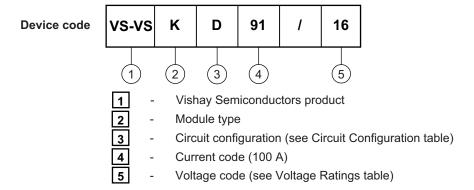



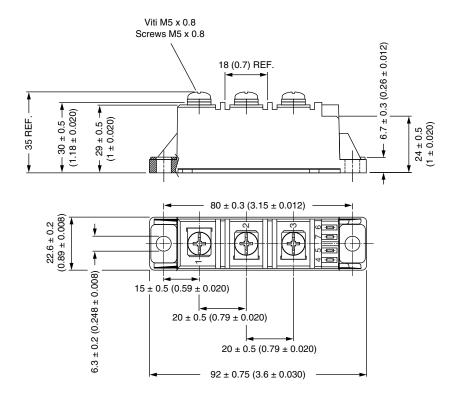
Fig. 11 - Thermal Impedance Z_{thJC} Characteristics

ORDERING INFORMATION TABLE

Note

• To order the optional hardware go to www.vishay.com/doc?95172

Vishay Semiconductors


CIRCUIT CONFIGURATION		
CIRCUIT DESCRIPTION	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING
Two diodes doubler circuit	D	VSKD (1) ~ (2) ~ (3)
Two diodes common cathode	С	VSKC (1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Two diodes common anode	J	VSKJ (1) (2) - (3)
Single diode	E	VSKE (1) 0

LINKS TO RELAT	ED DOCUMENTS
Dimensions	www.vishay.com/doc?95369

Vishay Semiconductors

ADD-A-PAK Generation VII - Diode

DIMENSIONS in millimeters (inches)

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.