
Vishay Semiconductors

www.vishay.com

Hyperfast Rectifier, 4 A FRED Pt[®]

SlimDPAK (TO-252AE)

LINKS TO ADDITIONAL RESOURCES

PRIMARY CHARACTERISTICS				
I _{F(AV)}	4 A			
V _R	200 V			
V _F at I _F	0.71 V			
t _{rr} (typ.)	16 ns			
T _J max.	175 °C			
Package	SlimDPAK (TO-252AE)			
Circuit configuration	Single			

FEATURES

- · Hyperfast recovery time
- 175 °C max. operating junction temperature
- Low forward voltage drop reduced Q_{rr} and soft recoverv
- Low leakage current
- Very low profile typical height of 1.3 mm
- Ideal for automated placement
- · Polyimide passivation for high reliability standard
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- AEC-Q101 qualified, meets JESD 201 class 2 whisker test
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DESCRIPTION / APPLICATIONS

State of the art hyper fast recovery rectifiers with optimized performance of forward voltage drop and hyper fast recovery time.

The planar structure and the platinum doped life time control guarantee the best overall performance. ruggedness, and reliability characteristics.

These devices are intended for use in PFC boost stage in the AC/DC section of SMPS inverters, or as freewheeling diodes. Their extremely optimized stored charge and low recovery current minimize the switching losses and reduce over dissipation in the switching element and snubbers.

MECHANICAL DATA

Case: SlimDPAK (TO-252AE)

Molding compound meets UL 94 V-0 flammability rating Halogen-free, RoHS-compliant

Terminals: matte tin plated leads, solderable per J-STD-002

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Peak repetitive reverse voltage	V _{RRM}		200	V	
Average rectified forward current	I _{F(AV)}	T _C = 167 °C	4	٨	
Non-repetitive peak surge current	I _{FSM}	$T_J = 25 \ ^\circ C$, 10 ms sine pulse wave	100	A	
Operating junction and storage temperatures	T _J , T _{Stg}		-55 to +175	°C	

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Breakdown voltage, blocking voltage	V_{BR}, V_{R}	I _R = 100 μA	200	-	-		
Forward voltage	V _F	I _F = 4 A	-	0.88	1.0	V	
		I _F = 4 A, T _J = 150 °C	-	0.71	0.80		
Reverse leakage current	I _R	$V_{R} = V_{R}$ rated	-	-	3		
		$T_J = 150 \ ^{\circ}C, V_R = V_R \text{ rated}$	-	-	80	μA	
Junction capacitance	CT	V _R = 200 V	-	17	-	pF	

Revision: 21-Apr-2023 1 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

RoHS COMPLIANT HALOGEN

FREE

www.vishay.com

Vishay Semiconductors

DYNAMIC RECOVERY CHARACTERISTICS ($T_J = 25$ °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
		$I_F = 1.0 \text{ A}, \text{ d}I_F/\text{d}t =$	100 A/µs, V _R = 30 V	-	16	-	
Reverse recovery time	t _{rr}	$I_F = 0.5 \text{ A}, I_R = 1 \text{ A}, I_{RR} = 0.25 \text{ A}$		-	-	25	ns
neverse recovery time		T _J = 25 °C		-	20	-	115
		T _J = 125 °C		-	30	-	
Peak recovery current	1	T _J = 25 °C	I _F = 4 A dI _F /dt = 200 A/μs	-	2.5	-	А
Peak recovery current I _{RRM}	T _J = 125 °C	$V_{\rm B} = 160 {\rm V}$	-	4	-	~	
Reverse recovery charge Qrr	Q _{rr}	T _J = 25 °C		-	25	-	nC
neverse recovery charge	^{Crr} T	T _J = 125 °C		-	60	-	ne

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Maximum junction and storage temperature range	T _J , T _{Stg}		-55	-	175	°C
Thermal resistance, junction to ambient	R _{thJA} ⁽¹⁾⁽²⁾		-	73	90	°C/W
Thermal resistance, junction to mount	R _{thJM} ⁽³⁾		-	2.1	2.5	°C/W
Weight			-	0.20	-	g
Marking device		Case style SlimDPAK (TO-252AE)		4EV	'H02	

Notes

- ⁽¹⁾ The heat generated must be less than thermal conductivity from junction to ambient; $dP_D/dT_J < 1R_{thJA}$
- ⁽²⁾ Free air, mounted or recommended copper pad area; thermal resistance R_{thJA} junction to ambient
- ⁽³⁾ Mounted on infinite heatsink

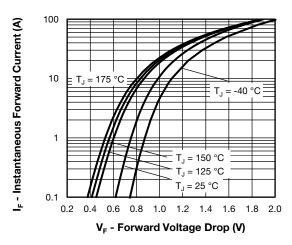


Fig. 1 - Typical Forward Voltage Drop Characteristics

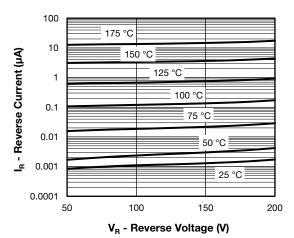


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

VS-4EVH02HM3

Vishay Semiconductors

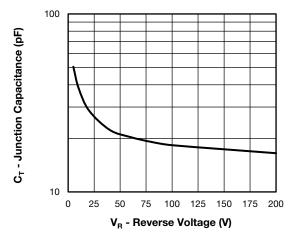


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

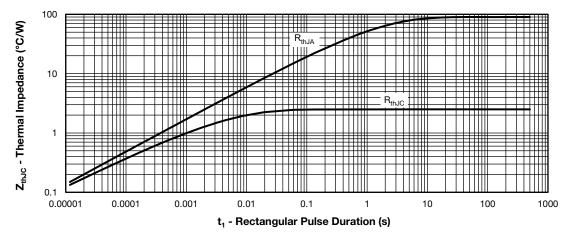
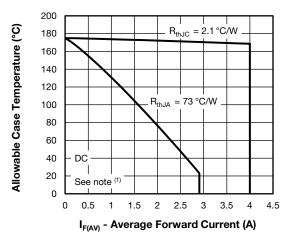
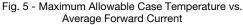




Fig. 4 - Maximum Thermal Impedance ZthJC Characteristics

Note

⁽¹⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$;

 $\begin{array}{l} \mathsf{Pd} = \mathsf{forward} \ \mathsf{power} \ \mathsf{loss} = \mathsf{I}_{\mathsf{F}(\mathsf{AV})} \times \mathsf{V}_{\mathsf{FM}} \ \mathsf{at} \ (\mathsf{I}_{\mathsf{F}(\mathsf{AV})}/\mathsf{D}) \ (\mathsf{see} \ \mathsf{fig.} \ \mathsf{6}); \\ \mathsf{Pd}_{\mathsf{REV}} = \mathsf{inverse} \ \mathsf{power} \ \mathsf{loss} = \mathsf{V}_{\mathsf{R1}} \times \mathsf{I}_{\mathsf{R}} \ (\mathsf{1} - \mathsf{D}); \ \mathsf{I}_{\mathsf{R}} \ \mathsf{at} \ \mathsf{V}_{\mathsf{R1}} = \mathsf{rated} \ \mathsf{V}_{\mathsf{R}} \end{array}$

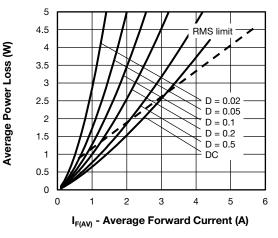


Fig. 6 - Forward Power Loss Characteristics

Revision: 21-Apr-2023

3

Document Number: 95669

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

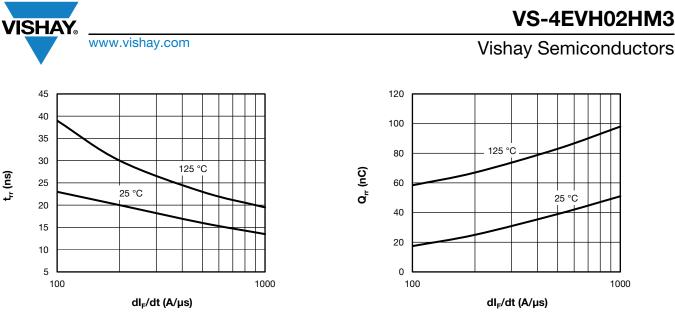



Fig. 7 - Typical Reverse Recovery Time vs. dl_F/dt

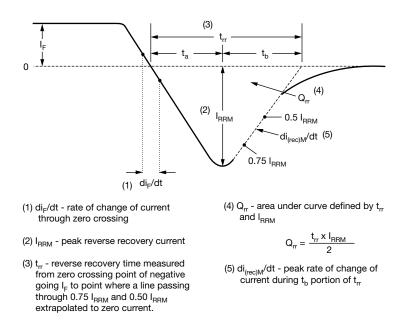
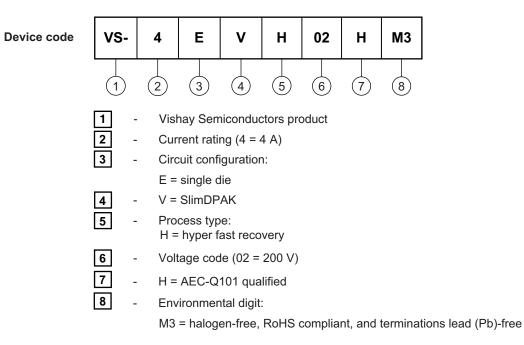
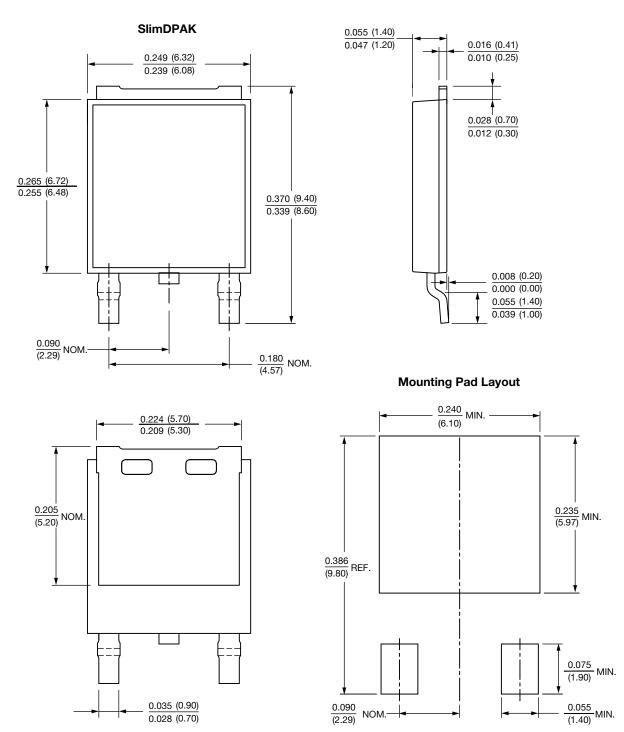



Fig. 9 - Reverse Recovery Waveform and Definitions

ORDERING INFORMATION TABLE

ORDERING INFORMATION (Example)						
PREFERRED P/N	QUANTITY PER REEL	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION			
VS-4EVH02HM3/I	4500	4500	13"diameter plastic tape and reel			


LINKS TO RELATED DOCUMENTS				
Dimensions www.vishay.com/doc?96081				
Part marking information	www.vishay.com/doc?96085			
Packaging information	www.vishay.com/doc?88869			
SPICE model	www.vishay.com/doc?97123			

SlimDPAK

DIMENSIONS in inches (millimeters)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2025 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2025

1