
Metallized Polyester Film Capacitors MKT Radial Potted Type

Dimensions in mm

APPLICATIONS

Blocking, coupling and decoupling. Bypass and energy reservoir

MARKING

C-value; tolerance; rated voltage; year and week of manufacturer; manufacturer's type designation, manufacturers logo or name, location

DIELECTRIC

Polyester film

ELECTRODES

Vacuum deposited aluminum

ENCAPSULATION

Flame retardant plastic case and epoxy resin (UL-class 94 V-0)

CONSTRUCTION

Wound mono construction

LEADS

Tinned wire

CAPACITANCE TOLERANCE

 \pm 10 %; \pm 5 %

FEATURES

Pitch 5 mm available loose in box, ammopack and taped on reel.

Material categorization:
 For definitions of compliance please see www.vishay.com/doc?99912

(e3) RoHS

CAPACITANCE RANGE (E12 SERIES)

0.001 μF to 1.2 μF

COMPLIANT HALOGEN FREE GREEN (5-2008)

RATED (DC) VOLTAGE

63 V; 100 V; 250 V; 400 V

RATED (AC) VOLTAGE

40 V; 63 V; 160 V; 200 V

CLIMATIC CATEGORY

55/125/56

RATED TEMPERATURE

85 °C

MAXIMUM APPLICATION TEMPERATURE

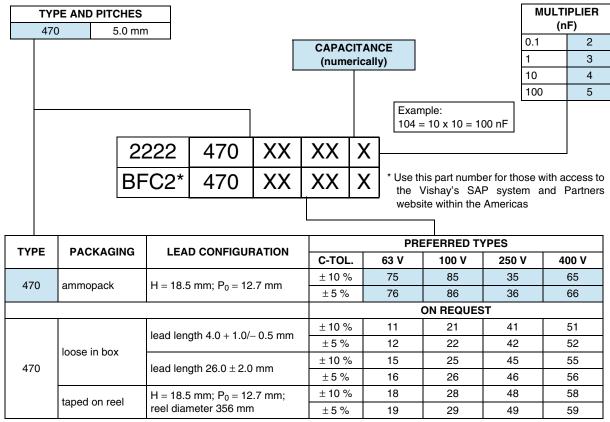
125 °C

REFERENCE SPECIFICATIONS

IEC 60384-2

PERFORMANCE GRADE

Grade 1 (long life)


DETAIL SPECIFICATION

For more detailed data and test requirements contact: dc-film@vishay.com

Metallized Polyester Film Capacitors MKT Radial Potted Type

COMPOSITION OF CATALOG NUMBER

Note

SPECIFIC REFERENCE DATA

DESCRIPTION		VAI	LUE	
Tangent of loss angle:	at 1 kHz	at 10 kHz	at 100 kHz	at 1 MHz
C ≤ 0.1 μF	≤ 60 x 10 ⁻⁴	≤ 120 x 10 ⁻⁴	≤ 200 x 10 ⁻⁴	≤ 250 x 10 ^{-4 (1)}
0.1 μF < C ≤ 0.47 μF	≤ 60 x 10 ⁻⁴	≤ 120 x 10 ⁻⁴	≤ 200 x 10 ⁻⁴	-
0.47 μF < C ≤ 1.2 μF	≤ 60 x 10 ⁻⁴	≤ 120 x 10 ⁻⁴	-	-
Rated voltage pulse slope (dU/dt) _R at	63 V _{DC}	100 V _{DC}	250 V _{DC}	400 V _{DC}
	100 V/μs	160 V/μs	400 V/μs	800 V/μs
R between leads, for C ≤ 0.33 μF:				
at 10 V; 1 min	$>$ 15 000 M Ω			
at 100 V; 1 min		$>$ 15 000 M Ω	$>$ 15 000 M Ω	$>$ 15 000 M Ω
RC between leads, for C > 0.33 μF				
at 10 V; 1 min	> 5000 s			
at 100 V; 1 min		> 5000 s		
R between interconnected leads and	> 30 000 MΩ	> 30 000 MΩ	> 30 000 MΩ	> 30 000 MΩ
casing (foil method)	> 30 000 IVIS2	> 30 000 IVIS2	> 30 000 IVIS2	> 30 000 IVIS2
Withstanding (DC) voltage (cut off current	100 V; 1 min	160 V; 1 min	400 V; 1 min	640 V; 1 min
10 mA) ⁽²⁾ ; rise time ≤ 1000 V/s	100 4, 1 111111	100 v, 1 111111	700 V, 1 111111	070 V, 1 111111
Withstanding (DC) voltage between leads	200 V; 1 min	200 V; 1 min	500 V; 1 min	800 V; 1 min
and case	200 1, 1 111111	200 1, 1 111111	500 V, 1 111111	000 0, 1111111

Notes

[•] For detailed tape specification refer to packaging information www.vishav.com/doc?27139

⁽¹⁾ Only for 250 V and 400 V for C \leq 0.01 μ F

⁽²⁾ See "Voltage Proof Test for Metalized Film Capacitors": www.vishav.com/doc?28169

Vishay BCcomponents

 $U_{Rdc} = 63 \text{ V}; U_{Rac} = 40 \text{ V}$

			,	AND PAC	KAGING			
	DIMENCIONO		AMMOPACK (2)		REEL (2)	LOOSE IN BOX		
С	DIMENSIONS W x H x L	MASS (1)		H = 18.5 mm			short leads	long leads
(μF)	(mm)	(g)	C-tol. = ± 10 %	C-tol. = ± 5 %				
	(,		last 5 digits of catalog number	last 5 digits of catalog number	SPQ	SPQ	SPQ	SPQ
Pitch = 5.0	\pm 0.3 mm; $d_t = 0.50 \pm 0.$	05 mm						
0.068			75683	76683				
0.082	2.5 x 6.5 x 7.2	0.25	75823	76823	2000	2000	2000	1000
0.1			75104	76104				
0.12			75124	76124				
0.15			75154	76154				
0.18			75184	76184				
0.22	3.5 x 8.0 x 7.2	0.35	75224	76224	1500	1500	2000	1000
0.27			75274	76274				
0.33			75334	76334				
0.39			75394	76394				
0.47			75474	76474				
0.56	4.5 x 9.0 x 7.2	0.45	75564	76564	1000	1000	2000	1000
0.68			75684	76684				
0.82	·		75824	76824				
1	6.0 x 11.0 x 7.2	0.60	75105	76105	750	1000	2000	1000
1.2			75125	76125				

Notes

 U_{Rdc} = 100 V; U_{Rac} = 63 V

				CATALOG NUMBE	R 2222 470 .	AND PAC	KAGING	
	DIMENSIONS		AMMOPACK (2)		REEL (2)	LOOSE	IN BOX	
С	DIMENSIONS W x H x L	MASS (1)		H = 18.5 mm			short leads	long leads
(μ F)	(mm)	(g)	C-tol. = ± 10 %	C-tol. = ± 5 %				
	()		last 5 digits of catalog number	last 5 digits of catalog number	SPQ	SPQ	SPQ	SPQ
Pitch = 5.0	\pm 0.3 mm; $d_t = 0.50 \pm 0$.	05 mm						
0.022			85223	86223				1000
0.027			85273	86273			2000	
0.033	$2.5 \times 6.5 \times 7.2$	0.25	85333	86333	2000	2000		
0.039	2.5 × 0.5 × 7.2	0.23	85393	86393				
0.047			85473	86473				
0.056			85563	86563				
0.068			85683	86683				
0.082	$3.5 \times 8.0 \times 7.2$	0.35	85823	86823	1500	1500	2000	1000
0.1	0.0 × 0.0 × 7.2	0.00	85104	86104	1000	1300	2000	1000
0.12			85124	86124				
0.15			85154	86154				1000
0.18	$4.5\times9.0\times7.2$	0.45	85184	86184	1000	1000	2000	
0.22			85224	86224				
0.27			85274	86274				1000
0.33	6.0 × 11.0 × 7.2	0.65	85334	86334	750	1000	2000	
0.39	0.0 × 11.0 × 7.2	0.00	85394	86394	750	1.500	2000	
0.47			85474	86474				

⁽¹⁾ Net weight for short lead product only

⁽²⁾ H = In-tape height; P₀ = Sprocket hole distance; for detailed specifications refer to Packaging Information

[•] SPQ = Standard packing quantity

⁽¹⁾ Net weight for short lead product only

⁽²⁾ H = In-tape height; P₀ = Sprocket hole distance; for detailed specifications refer to Packaging Information

[•] SPQ = Standard packing quantity

Metallized Polyester Film Capacitors MKT Radial Potted Type

 $U_{Rdc} = 250 \text{ V}; U_{Rac} = 160 \text{ V}$

			CATALOG NUMBER 2222 470 AND PACKAGING					
	DIMENSIONS		AMMOPACK (2)		REEL (2)	LOOSE	IN BOX	
С	DIMENSIONS W x H x L	MASS (1)		H = 18.5 mm			short leads	long leads
(μ F)	(mm)	(g)	C-tol. = ± 10 %	C-tol. = ± 5 %				
	(11111)		last 5 digits of	last 5 digits of	CDO	CDO	CDO	cno
			catalog number	catalog number	SPQ	SPQ	SPQ	SPQ
Pitch = 5.0	\pm 0.3 mm; $d_t = 0.50 \pm 0$.05 mm				-	•	
0.01			35103	36103			2000	1000
0.012	2.5 x 6.5 x 7.2	0.25	35123	36123	2000	2000		
0.015	2.5 X 0.5 X 7.2	0.23	35153	36153		2000		
0.018			35183	36183				
0.022			35223	36223				
0.027	3.5 x 8.0 x 7.2	0.35	35273	36273	1500	1500	2000	1000
0.033	3.3 X 0.0 X 7.2	0.55	35333	36333	1500			
0.039			35393	36393				
0.047			35473	36473			2000	1000
0.056	4.5 x 9.0 x 7.2	0.45	35563	36563	1000 1	1000		
0.068			35683	36683				
0.082			35823	36823			2000	1000
0.1	6.0 x 11.0 x 7.2	0.60	35104	36104	750	1000		
0.12			35124	36124				

Notes

- (1) Net weight for short lead product only
- (2) H = In-tape height; P₀ = Sprocket hole distance; for detailed specifications refer to Packaging Information
- SPQ = Standard packing quantity

 $\textbf{U}_{\textbf{Rdc}} = \textbf{400 V; } \textbf{U}_{\textbf{Rac}} = \textbf{200 V}$

			CATALOG NUMBER 2222 470 AND PACKAGING					
	DIMENSIONS		Α	MMOPACK (2)		REEL (2)	LOOSE	IN BOX
С	DIMENSIONS W x H x L	MASS (1)	H = 18	3.5 mm			short leads	long leads
(μ F)	(mm)	(g)	C-tol. = ± 10 %	C-tol. = ± 5 %				
	()		last 5 digits of catalog number	last 5 digits of catalog number	SPQ	SPQ	SPQ	SPQ
Pitch = 5.0	\pm 0.3 mm; $d_t = 0.50 \pm 0$.05 mm						
0.001			65102	66102				
0.0012			65122	66122				
0.0015			65152	66152			2000	1000
0.0018			65182	66182				
0.0022			65222	66222				
0.0027	2.5 x 6.5 x 7.2	0.25	65272	66272	2000	2000		
0.0033	2.5 X 0.5 X 7.2	0.25	65332	66332	2000	2000		
0.0039			65392	66392				
0.0047			65472	66472				
0.0056			65562	66562				
0.0068			65682	66682				
0.0082			65822	66822				
0.01			65103	66103				1000
0.012	3.5 x 8.0 x 7.2	0.35	65123	66123	1500	1500	2000	
0.015			65153	66153				
0.018			65183	66183	1000			1000
0.022	4.5 x 9.0 x 7.2	0.45	65223	66223		1000	2000	
0.027			65273	66273				
0.033			65333	66333				
0.039	6.0 x 11.0 x 7.2	0.60	65393	66393	750	1000	2000	1000
0.047			65473	66473				

Notes

⁽¹⁾ Net weight for short lead product only

 $^{^{(2)}}$ H = In-tape height; P_0 = Sprocket hole distance; for detailed specifications refer to Packaging Information

[•] SPQ = Standard packing quantity

Vishay BCcomponents

MOUNTING

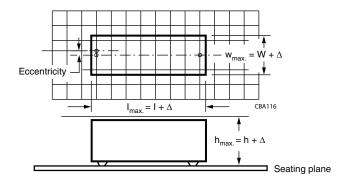
Normal Use

The capacitors are designed for mounting on printed-circuit boards. The capacitors packed in bandoliers are designed for mounting in printed-circuit boards by means of automatic insertion machines.

For detailed tape specifications refer to: "Packaging Information": www.vishay.com/doc?28139

Specific Method of Mounting to Withstand Vibration and Shock

In order to withstand vibration and shock tests, it must be ensured that the stand-off pips are in good contact with the printed-circuit board:


- For pitches ≤ 15 mm capacitors shall be mechanically fixed by the leads
- For larger pitches the capacitors shall be mounted in the same way and the body clamped

Space Requirements on Printed-Circuit Board

The maximum space for length (I_{max}) , width (w_{max}) and height (h_{max}) of film capacitors to take in account on the printed circuit board is shown in the drawings.

For products with pitch ≤ 15 mm, $\Delta w = \Delta l = 0.3$ mm and $\Delta h = 0.1$ mm

Eccentricity defined as in drawing. The maximum eccentricity is smaller than or equal to the lead diameter of the product concerned.

SOLDERING

For general soldering conditions and wave soldering profile, we refer to the application note: "Soldering Guidelines for Film Capacitors": www.vishay.com/doc?28171

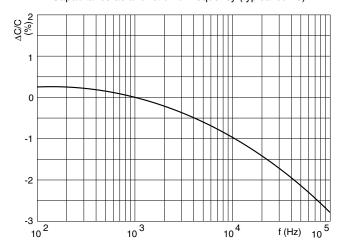
Storage Temperature

Storage temperature: T_{sta} = - 25 °C to + 40 °C with RH maximum 80 % without condensation

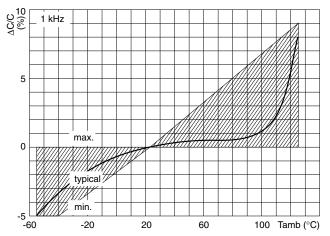
Ratings and Characteristics Reference Conditions

Unless otherwise specified, all electrical values apply to an ambient temperature of 23 °C ± 1 °C, an atmospheric pressure of 86 kPa to 106 kPa and a relative humidity of 50 % \pm 2 %.

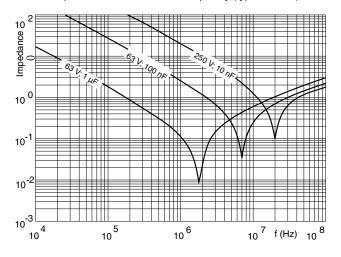
For reference testing, a conditioning period shall be applied over 96 h ± 4 h by heating the products in a circulating air oven at the rated temperature and a relative humidity not exceeding 20 %.

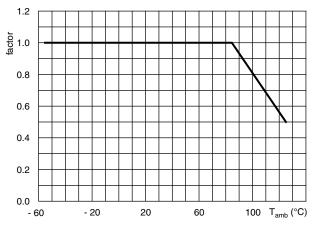

Document Number: 28112 Revision: 20-Oct-2022

Metallized Polyester Film Capacitors MKT Radial Potted Type



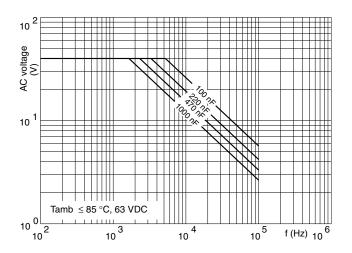
CHARACTERISTICS

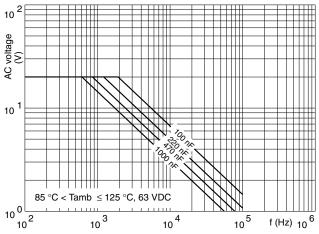

Capacitance as a function of frequency (typical curve)


Capacitance as a function of ambient temperature (typical curve)

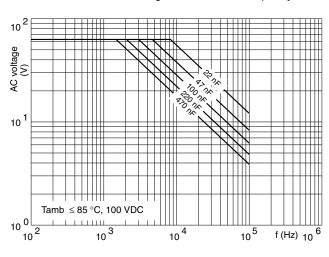
Impedance as a function of frequency (typical curve)

Maximum DC and AC voltage as a function of temperature

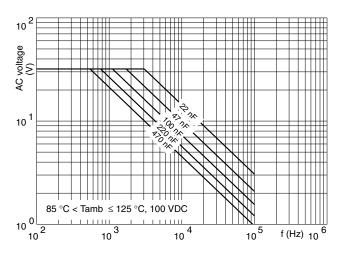


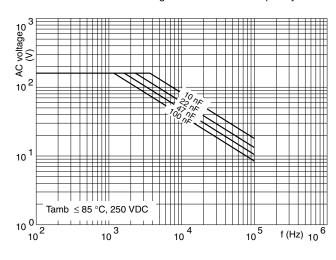

Maximum RMS voltage as a function of frequency

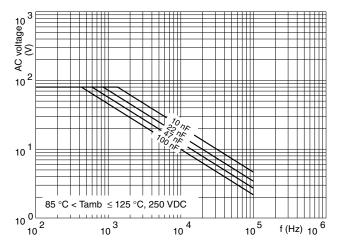
Maximum RMS current as a function of frequency



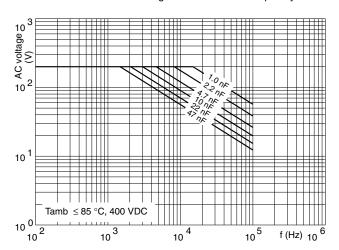
Vishay BCcomponents




Maximum RMS voltage as a function of frequency


Maximum RMS current as a function of frequency

Maximum RMS voltage as a function of frequency


Maximum RMS current as a function of frequency

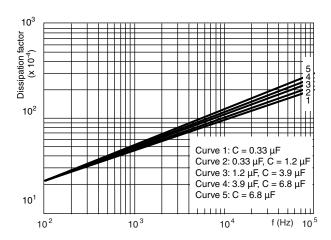
Metallized Polyester Film Capacitors MKT Radial Potted Type

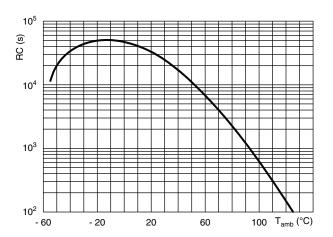
Maximum RMS voltage as a function of frequency

Maximum RMS current as a function of frequency

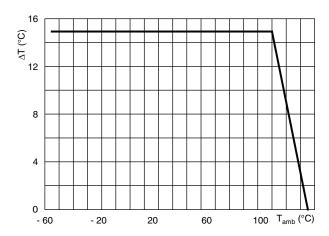
MAXIMUM RMS CURRENT (SINEWAVE) AS A FUNCTION OF FREQUENCY

The maximum RMS current is defined by $I_{ac} = \omega x C x U_{ac}$.


Uac is the maximum AC voltage depending on the ambient temperature in the curves "Maximum RMS voltage and AC current as a function of frequency".



Vishay BCcomponents


Tangent of loss angle as a function of frequency (typical curve)

Insulation resistance as a function of ambient temperature (typical curve)

Maximum allowed component temperature rise (ΔT) as a function of the ambient temperature (T_{amb})

Maximum DC and AC voltage as a function of temperature

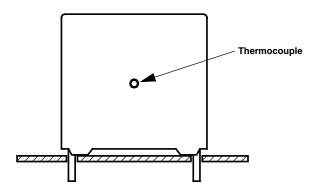
Metallized Polyester Film Capacitors MKT Radial Potted Type

HEAT CONDUCTIVITY (G) AS A FUNCTION OF PITCH AND CAPACITOR BODY THICKNESS IN mW/°C

W _{max.}	HEAT CONDUCTIVITY (mW/°C)
(mm)	PITCH 5 mm
2.5	2.5
3.5	3.0
4.5	4.0
6.0	5.5

POWER DISSIPATION AND MAXIMUM COMPONENT TEMPERATURE RISE

The power dissipation must be limited in order not to exceed the maximum allowed component temperature rise as a function of the free ambient temperature.


The power dissipation can be calculated according type detail specification "HQN-384-01/101: Technical Information Film Capacitors".

The component temperature rise (ΔT) can be measured (see section "Measuring the Component Temperature" for more details) or calculated by $\Delta T = P/G$:

- ΔT = Component temperature rise (°C)
- P = Power dissipation of the component (mW)
- G = Heat conductivity of the component (mW/°C)

MEASURING THE COMPONENT TEMPERATURE

A thermocouple must be attached to the capacitor body as in:

The temperature is measured in unloaded (T_{amb}) and maximum loaded condition (T_C).

The temperature rise is given by $\Delta T = T_C - T_{amb}$.

To avoid radiation or convection, the capacitor should be tested in a wind-free box.

www.vishay.com

For technical questions, contact: dc-film@vishay.com

Document Number: 28112 Revision: 20-Oct-2022

Vishay BCcomponents

APPLICATION NOTE AND LIMITING CONDITIONS

These capacitors are not suitable for mains applications as across-the-line capacitors without additional protection, as described hereunder. These mains applications are strictly regulated in safety standards and therefore electromagnetic interference suppression capacitors conforming the standards must be used.

For capacitors connected in parallel, normally the proof voltage and possibly the rated voltage must be reduced. For information depending of the capacitance value and the number of parallel connections contact: dc-film@vishav.com

To select the capacitor for a certain application, the following conditions must be checked:

- 1. The peak voltage (U_P) shall not be greater than the rated DC voltage (U_{BDC}).
- 2. The peak-to-peak voltage (U_{P-P}) shall not be greater than 2√2 x U_{BAC} to avoid the ionization inception level.
- 3. The voltage pulse slope (dU/dt) shall not exceed the rated voltage pulse slope in an RC-circuit at rated voltage and without ringing. If the pulse voltage is lower than the rated DC voltage, the rated voltage pulse slope may be multiplied by URDC and divided by the applied voltage.

For all other pulses following equation must be fulfilled:

$$2 \times \int_{0}^{T} \left(\frac{dU}{dt}\right)^{2} \times dt < U_{Rdc} \times \left(\frac{dU}{dt}\right)_{rated}$$

T is the pulse duration.

The rated voltage pulse slope is valid for ambient temperatures up to 85 °C. For higher temperatures a derating factor of 3 % per K shall be applied.

- 4. The maximum component surface temperature rise must be lower than the limits (see graph "Max. allowed component temperature rise").
- 5. Since in circuits used at voltages over 280 V peak-to-peak the risk for an intrinsically active flammability after a capacitor breakdown (short circuit) increases, it is recommended that the power to the component is limited to 100 times the values mentioned in the table: "Heat Conductivity"
- 6. When using these capacitors as across-the-line capacitor in the input filter for mains applications the applicant must guarantee that the following conditions are fulfilled in any case (spikes and surge voltages from the mains or line card supply included).
- 7. For continuous use as series connection with an impedance to the mains, please refer to application note www.vishav.com/doc?28153.

Voltage Conditions for 6 Above

ALLOWED VOLTAGES	T _{amb} ≤ 85 °C	85 °C < T _{amb} ≤ 100 °C	100 °C < T _{amb} ≤ 125 °C
Maximum continuous RMS voltage	U_RAC	0.8 x U _{RAC}	0.5 x U _{RAC}
Maximum temperature RMS-overvoltage (< 24 h)	1.25 x U _{RAC}	U _{RAC}	0.625 x U _{RAC}
Maximum peak voltage (V _{O-P}) (< 2 s)	1.6 x U _{RDC}	1.3 x U _{RDC}	0.8 x U _{RDC}

Metallized Polyester Film Capacitors MKT Radial Potted Type

INSPECTION REQUIREMENTS

General Notes:

Sub-clause numbers of tests and performance requirements refer to the "Sectional Specification, Publication IEC 60384-2 and Specific Reference Data".

Group C Inspection Requirements

SUB-C	CLAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
	GROUP C1A PART OF SAMPLE B-GROUP C1		
4.1	Dimensions (detail)		As specified in chapters "General Data" of this specification
4.3.1	Initial measurements	Capacitance Tangent of loss angle for: C ≤ 10 nF at 1 MHz 10 nF < C ≤ 470 nF at 100 kHz C > 470 nF at 10 kHz	No visible damage
4.3	Robustness of terminations	Tensile: Load 10 N; 10 s Bending: Load 5 N; 4 x 90°	
4.4	Resistance to soldering heat	Method: 1A Solder bath: 280 °C ± 5 °C Duration: 10 s	
4.14	Component solvent resistance	Isopropylalcohol at room temperature Method: 2 Immersion time: 5 min ± 0.5 min Recovery time: Min. 1 h, max. 2 h	
4.4.2	Final measurements	Visual examination	No visible damage Legible marking
		Capacitance	$ \Delta C/C \le 2$ % of the value measured initially
		Tangent of loss angle	Increase of $\tan \delta$ ≤ 0.005 for: $C \leq 10$ nF or ≤ 0.003 for: 10 nF $< C \leq 470$ nF or ≤ 0.002 for: $C > 470$ nF Compared to values measured in 4.3.1
	ROUP C1B PART OF SAMPLE B-GROUP C1		
4.6.1	Initial measurements	Capacitance Tangent of loss angle for: C ≤ 10 nF at 1 MHz 10 nF < C ≤ 470 nF at 100 kHz C > 470 nF at 10 kHz	
4.6	Rapid change of temperature	θA = - 55 °C θB = + 125 °C 5 cycles Duration t = 30 min	
4.7	Vibration	Visual examination Mounting: See section "Mounting" of this specification Procedure B4 Frequency range: 10 Hz to 55 Hz Amplitude: 0.75 mm or Acceleration 98 m/s² (whichever is less severe) Total duration 6 h	No visible damage
4.7.2	Final inspection	Visual examination	No visible damage

Vishay BCcomponents

SUB-CLA	USE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
	OUP C1B PART OF SAMPLE GROUP C1		
4.9	Shock	Mounting: See section "Mounting" of this specification Pulse shape: Half sine Acceleration: 490 m/s² Duration of pulse: 11 ms	
4.9.3 F	Final measurements	Visual examination	No visible damage
		Capacitance	$ \Delta C/C \le 5$ % for w = 2.5 mm or $ \Delta C/C \le 3$ % for w > 2.5 mm of the value measured in 4.6.1
		Tangent of loss angle	Increase of $\tan \delta$: ≤ 0.005 for: $C \leq 10$ nF or ≤ 0.003 for: 10 nF $< C \leq 470$ nF or ≤ 0.002 for: $C > 470$ nF
		Inculation registance	Compared to values measured in 4.6.1
		Insulation resistance	As specified in section "Insulation Resistance" of this specification
	DUP C1 COMBINED SAMPLE IMENS OF SUB-GROUPS C1B		
4.10	Climatic sequence		
	Ory heat	Temperature: + 125 °C Duration: 16 h	
	Damp heat cyclic Test Db, first cycle		
4.10.4	Cold	Temperature: - 55 °C Duration: 2 h	
7	Damp heat cyclic Test Db, remaining cycles		
4.10.6.2 F	Final measurements	Voltage proof = U _{RDC} for 1 min within 15 min after removal from test chamber	No breakdown or flash-over
		Visual examination	No visible damage Legible marking
		Capacitance	$ \Delta C/C \le 5$ % of the value measured in 4.4.2 or 4.9.3
		Tangent of loss angle	Increase of $\tan \delta$: ≤ 0.008 for: $C \leq 10$ nF or ≤ 0.005 for: 10 nF $< C \leq 470$ nF or ≤ 0.003 for: $C > 470$ nF Compared to values measured in 4.3.1 or 4.6.1
		Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification
SUB-GRO	OUP C2		,
4.11	Damp heat steady state	56 days, 40 °C, 90 % to 95 % RH	
	nitial measurements	Capacitance Tangent of loss angle at 1 kHz	
4.11.3 F	Final measurements	Voltage proof = U _{RDC} for 1 min within 15 min after removal from test chamber	No breakdown or flash-over
		Visual examination	No visible damage Legible marking
		Capacitance	$ \Delta C/C \le 5$ % of the value measured in 4.11.1.
		Tangent of loss angle	Increase of $\tan \delta$: ≤ 0.005 for: $C \leq 470$ nF or ≤ 0.003 for: $C > 470$ nF Compared to values measured in 4.11.1
		Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification

Document Number: 28112 Revision: 20-Oct-2022

For technical questions, contact: dc-film@vishay.com

Metallized Polyester Film Capacitors MKT Radial Potted Type

SUB-C	LAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
SUB-G	ROUP C3		
4.12	Endurance	Duration: 2000 h 1.25 x U _{RDC} at 85 °C 0.625 x U _{RDC} at 125 °C	
4.12.1	Initial measurements	Capacitance Tangent of loss angle for: C ≤ 10 nF at 1 MHz 10 nF < C ≤ 470 nF at 100 kHz C > 470 nF at 10 kHz	
4.12.5	Final measurements	Visual examination	No visible damage Legible marking
		Capacitance	$ \Delta C/C \le 5$ % compared to values measured in 4.12.1
		Tangent of loss angle	Increase of $\tan \delta$: ≤ 0.005 for: $C \leq 10$ nF or ≤ 0.003 for: 10 nF < $C \leq 470$ nF or ≤ 0.002 for: $C > 470$ nF Compared to values measured in 4.12.1
		Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification
SUB-G	ROUP C4		
4.13	Charge and discharge	10 000 cycles Charged to U_{RDC} Discharge resistance: $R = \frac{U_R}{C \times 5 \times (dU/dt)_R}$	
4.13.1	Initial measurements	Capacitance Tangent of loss angle for: C ≤ 10 nF at 1 MHz 10 nF < C ≤ 470 nF at 100 kHz C > 470 nF at 10 kHz	
4.13.3	Final measurements	Capacitance	$ \Delta C/C \le 3$ % compared to values measured in 4.13.1
		Tangent of loss angle	Increase of $\tan \delta$: ≤ 0.005 for: $C \leq 10$ nF or ≤ 0.003 for: 10 nF < $C \leq 470$ nF or ≤ 0.002 for: $C > 470$ nF Compared to values measured in 4.13.1
		Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification

Document Number: 28112 Revision: 20-Oct-2022

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.