NTC THERMISTOR NTCS....E3....SMT # **SMD NTC Thermistors with Enhanced Stability** #### **KEY BENEFITS** - Enhanced stability throughout component lifetime (maximum variation of initial R25 $^{\circ}$ C of \pm 0.5 $^{\circ}$ C after 10 000 hours at any temperature) - High R25 values (> = 100 k Ω) reduce self-heating effects - Ideal for wave and reflow soldering - One R25 °C-value per case in 0402, 0603, and 0805 #### **APPLICATIONS** - Temperature sensing circuits and compensation for: - Heat counters and other smart meters - Body thermometers - Other medical applications such as pacemakers and other implantable devices #### **RESOURCES** - Datasheet: NTCS....E3....SMT www.vishay.com/doc?29151 - Material categorization: For definitions of compliance please see www.vishay.com/doc?99912 - For technical questions contact nlr@vishay.com One of the World's Largest Manufacturers of Discrete Semiconductors and Passive Components ### **NTC THERMISTOR** NTCS....E3....SMT ## **SMD NTC Thermistors with Enhanced Stability** | ELECTRICAL DATA AND ORDERING INFORMATION | | | | | | |--|--------------------------------|----------------------------------|----------------------------------|-----------------------------------|------------------------------------| | VISHAY SAP
ORDERING NUMBER | R ₂₅ -VALUE
(kΩ) | TOLERANCE ON R ₂₅ (%) | B _{25/85} -VALUE
(K) | B _{25/85} -TOLERANCE (%) | DESCRIPTION | | NTCS0402E3214SMT | 210 | 1 | 3590 | ± 1 | SMD NTC thermistor 0402 Ni barrier | | NTCS0603E3124SMT | 122 | 1 | 3590 | ± 1 | SMD NTC thermistor 0603 Ni barrier | | NTCS0805E3104SMT | 100 | 1 | 3590 | ± 1 | SMD NTC thermistor 0805 Ni barrier | #### **RELIABILITY INFORMATION** After a test of storage at any temperature within the temperature range, the drift of electrical resistance at 25 $^{\circ}$ C is always lower than \pm 0.5 $^{\circ}$ C (see typical figures below for drift after storage during 10 000 h at maximal temperature 125 $^{\circ}$ C). The same type of stability is also observed in thermal shocks between the two extreme values of the temperature range. The tests are performed according to IEC 60068-2-2 and 2-14.