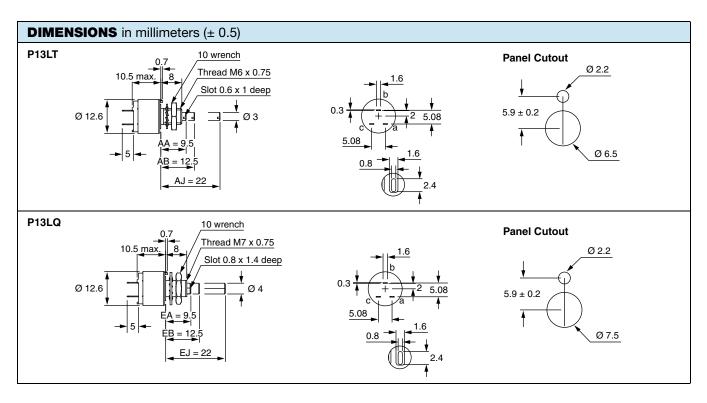
Long Life Cermet Potentiometer up to 2 Million Cycles

www.vishay.com

LINKS TO ADDITIONAL RESOURCES

'ISHA'

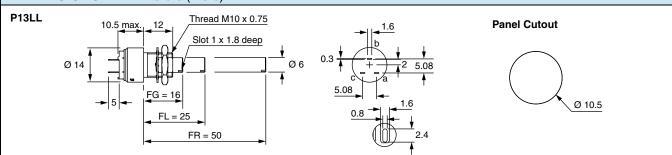

Their excellent performances are due to the use of a cermet-track sealed in a large case.

P13 interchangeability with RV6, combined with the excellent stability of its rated characteristics make it fully acceptable for industrial and professional uses.

FEATURES

- 2 million cycles for bushing L and N
- 1 million cycles for bushing T, Q, O, and P
- High power rating 1.5 W at 70 °C
- Test according to CECC 41000 or IEC 60393-1
- Cermet element
- Fully sealed case
- Mechanical strength
- Custom designs on request
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

QUICK REFERENCE DATA	
Multiple module	No
Switch module	n/a
Detent module	n/a
Special electrical laws	A: linear, L: logarithmic, F: reverse logarithmic
Sealing level	IP 67
Lifespan	1M cycles


P13L

1 For technical questions, contact: <u>sferpottrimmers@vishay.com</u> www.vishay.com

Vishay Sfernice

DIMENSIONS in millimeters (± 0.5)

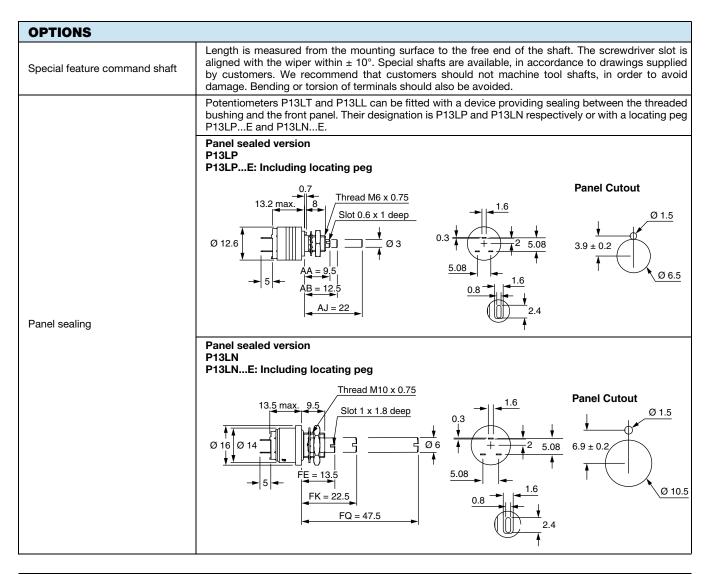
VISHAY

Resistive element Electrical travel Standard resistance value Tolerance Taper Circuit diagram		* TOTAL RESISTANCE	Cermet $270^{\circ} \pm 10^{\circ}$ $\therefore 5 k\Omega, 10 k\Omega,$	L 60 80	100
Standard resistance value		* TOTAL RESISTANCE	$270^{\circ} \pm 10^{\circ}$ $(\Omega, 5 k\Omega, 10 k\Omega, 4)$ $\pm 20 \%$ F F A A CLOCKWISE SHAF B C CLOCKWISE SHAF B C CLOCKWISE SHAF B C CLOCKWISE SHAF CLOCKWISE		100
Tolerance Taper		* TOTAL RESISTANCE	$\pm 20 \%$ F A A CLOCKWISE SHAF $a \rightarrow b \rightarrow cw$		100
Taper		% TOTAL RESISTANCE	F A		100
		% TOTAL RESISTANCE	$\begin{array}{c} A \\ \hline \\ 20 \\ \hline \\ CLOCKWISE SHAF \\ \hline \\ 0 \\ \hline \hline \\ 0 \\ \hline \\ 0 \\ \hline \hline \hline \hline$		100
Circuit diagram		((1) b Ô → cw	√_° (3)	
Power rating	Linear 1.5 W at 70 °C Logarithmic 0.75 W at 70 °C				
			.	N	
	Resistance	Linea Max. Power	r Taper Max. Working	Non-Lin Max. Power	ear Taper Max. Working
Standard resistance element data	Value (kΩ)	at 70 °C (W)	Voltage (V)	at 70 °C (W)	Voltage (V)
	1 5 10 50	1.5 1.5 1.5 1.5	38.7 86.6 122 274	0.75 0.75 0.75 0.75	27.4 61.2 87 194
Temperature coefficient (typical)			± 150 ppm/°C	;	
Limiting element voltage (linear law)			350 V		
End resistance (typical)			<u> </u>		
Dielectric strength (RMS)			2000 V		
Insulation resistance (300 V _{DC})			10 ⁶ MΩ		
Independent linearity (typical)			± 5 %		

Revision: 18-Sep-2024

2

Document Number: 51065


For technical questions, contact: <u>sferpottrimmers@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Sfernice

MECHANICAL SPECIFICATIONS							
Mechanical travel	300	° ± 5°					
Operating torque (typical)	2 Ncm max. 2.85 oz. inch max.						
End stop torque							
Style T, Q	35 Ncm max.	3.1 lb inch max.					
Style L	80 Ncm max.	7.1 lb inch max.					
Tightening torque of mounting nut							
Style T, Q	150 Ncm max.	13.3 lb inch max.					
Style L	250 Ncm max.	22.1 lb inch max.					
Unit weight	6 g to 18 g max.	0.22 oz. to 0.64 oz.					
Terminals	e3: F	Pure Sn					

ENVIRONMENTAL SPECIFICATIONS						
Temperature range -55 °C to +125 °C						
Climatic category	55/125/56					
Sealing	Fully sealed - container IP67					

Revision: 18-Sep-2024

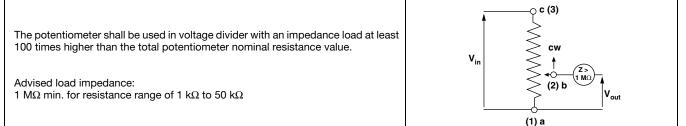
3

Document Number: 51065

For technical questions, contact: sferpottrimmers@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

Vishay Sfernice


OPTIONS	
	 On potentiometers equipped with a 3 mm Ø shaft, shaft locking can be obtained: Either by a taper nut tightening a slotted bushing. Ask for P13LO type. These devices are normally equipped with an AB type shaft (12.5 mm with a slot).
	P13LO
	0.7 $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$
Shaft locking	 Or by a tightening nut locked by a screw. Ask for ES1 type. On potentiometers equipped with a Ø 6 mm shaft, locking can be obtained by a taper nut applying pressure on a slotted notched washer. This device is supplied in a box as an accessory. Ask for DBAN. These devices are ordered separately. Please consult Vishay Sfernice.
	P13LL DBAN
	No locking on shaft Ø 4 mm.

MARKING

Printed:

- Vishay trademark
- Part number (including ohmic value code, tolerance code and taper)
- Manufacturing date code
- Marking of terminals a

APPLICATION NOTE

PACKAGING

- In box of 8 pieces for shafts FR and FQ
- In box of 10 pieces for shafts FE, FL, FG, and FK
- In box of 15 pieces for shafts AJ and EJ
- In box of 25 pieces for shafts AB, AA, EA, and EB

Hardware: nuts, washer, and O-ring are separately supplied (not mounted on the potentiometer), in a small bag placed in the packaging.

Vishay Sfernice

PERFORMANCE									
		TYPICAL VALUES AND DRIFTS							
TESTS	CONDITIONS	∆ R⊺/R⊺ (%)	∆ R₁₋₂/R₁₋₂ (%)	OTHER					
Electrical endurance	1000 h at rated power 90'/30' - ambient temperature 70 °C	± 20 %	± 20 %	-					
Climatic sequence	Phase A dry heat 125 °C Phase B damp heat Phase C cold -55 °C Phase D damp heat 5 cycles	± 0.5 %	±1%	-					
Damp heat, steady state	56 days, 40 °C 93 % HR	± 0.5 %	±1%	Dielectric strength: 1000 V Insulation resistance: > $10^4 M\Omega$					
Change of temperature	5 cycles, -55 °C at +125 °C	± 0.5 %	-	-					
Mechanical endurance	Bushings L and N: 2 000 000 cycles Bushings T, Q, O, and P: 1 000 000 cycles at rated power Turn angle ± 60° Temperature ± 20 °C	± 20 %	-	Independent linearity: ± 10 %					
Shock	50 g's at 11 ms, 3 successive shocks in 3 directions	± 0.1 %	± 0.2 %	-					
Vibration	10 Hz to 55 Hz, 0.75 mm or 10 <i>g</i> 's during 6 h	± 0.1 %	-	$\Delta V_{1-2}/V_{1-3} < \pm 0.2$ %					

Note

• Nothing stated herein shall be construed as a guarantee of quality or durability

ORDERING INFORMATION (part number)												
F	>	1		3	L	Q	Ε	AS	1 0 3	3 M L	E	
							_					
MODEL	BL	ISHI	NG		S	HAFT		SHAFT END	OHMIC VALUE	TOLERANCE	TAPER	SPECIAL
P13L	T Q	Ø 6 7	L 8 8		ø	L	Only with bushing	S = slotted F = flatted R = round D = custom	102 = 1 kΩ 502 = 5 kΩ 103 = 10 kΩ 503 = 50 kΩ	M = 20 %	A = linear L = clockwise logarithmic F = inverse	E = locating peg or special code given by Vishay
	L	10	12	AA	3	9.5	Τ, Ρ				clockwise	
	0	6	11	AB	3	12.5					logarithmic	
	Р	6	8	AJ	3	22	Τ, Ρ					
	Ν	10	9.5	EA	4	9.5	Q					
				EB	4	12.5	Q					
				EJ	4	22	Q					
				FG	6	16	L					
				FL	6	25	L					
				FR	6	50	L					
				FE	6	13	Ν					
				FK	6	22	Ν					
				FQ	6	47.5	Ν					

PART NUMBER DESCRIPTION (for information only)											
P13L	Q	E	EA	10K	20 %	L		BO25			e3
MODEL	BUSHING	SPECIAL	SHAFT		TOLERANCE	TAPER	SPECIAL	PACKAGING	SHAFT	SPECIAL	LEAD
WODEL	Boolinid	OF EOIAE		VALUE	TOLEHANOL		OF EOIAE	TAORAGING		OI LOIAL	(Pb)-FREE

5

Vishay Sfernice

ACCESSORIES	
Additional Accessories (to order separately)	www.vishay.com/doc?51051
Control knobs	www.vishay.com/doc?51101

RELATED DOCUMENTS	
APPLICATION NOTES	
Potentiometers and Trimmers	www.vishay.com/doc?51001
Guidelines for Vishay Sfernice Resistive and Inductive Components	www.vishay.com/doc?52029

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2025 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

Revision: 01-Jan-2025

1